Session Title

Additional Abstracts

College

College of Arts and Sciences

Department

Mathematics

Faculty Mentor

Arran Hamm, Ph.D.

Abstract

Bootstrap Percolation, sometimes used to model the spread of disease, is a dynamic process on a graph in which a vertex becomes infected if it has too many edges to infected vertices. For bootstrap percolation in a random geometric graph, the size of the initially infected set can determine whether or not the system will percolate. If we choose the initially infected set to be too small, the system will not percolate. Likewise, if we choose our initially infected set to be large enough, then the system will percolate with high probability. We explore just how large our initially infected set should be in order for it to percolate. Furthermore, we explore the local resilience of the graph with respect to bootstrap percolation and with respect to connectivity. We discover that we have a series of “bad configurations” that we want to avoid, or else our system will percolate, and we test how many edges we can remove from our graph in order to avoid these bad configurations. For the local resilience of the connectivity property, we looked into how many edges we could delete from the graph while keeping the graph connected.

Grant Support?

This project is supported by an Institutional DevelopmentAward (IDeA) from the National Institute of General MedicalSciences (2 P20 GM103499) from the National Institutes of Health.

Share

COinS
 

Bootstrap Percolation in Random Geometric Graphs

Bootstrap Percolation, sometimes used to model the spread of disease, is a dynamic process on a graph in which a vertex becomes infected if it has too many edges to infected vertices. For bootstrap percolation in a random geometric graph, the size of the initially infected set can determine whether or not the system will percolate. If we choose the initially infected set to be too small, the system will not percolate. Likewise, if we choose our initially infected set to be large enough, then the system will percolate with high probability. We explore just how large our initially infected set should be in order for it to percolate. Furthermore, we explore the local resilience of the graph with respect to bootstrap percolation and with respect to connectivity. We discover that we have a series of “bad configurations” that we want to avoid, or else our system will percolate, and we test how many edges we can remove from our graph in order to avoid these bad configurations. For the local resilience of the connectivity property, we looked into how many edges we could delete from the graph while keeping the graph connected.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.