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ABSTRACT 

 

 

Introduction of nonnative plants outside their natural range has caused widespread reduction in 

the abundance and diversity of native plant species. Nonnative plants typically form dense, often 

monotypic, thickets that affect the ability of animals to find food, reproduce, avoid predation risk, 

and thermoregulate. By doing so, nonnative plants have the potential to displace resident animals 

from areas otherwise suitable as animal habitat. However, limited studies have investigated 

whether resident animals avoid areas dominated by nonnative plants. This study investigated 

impacts of nonnative plants on eastern box turtles (Terrapene carolina carolina), a species that 

has been declining throughout their range. To determine if eastern box turtles avoid nonnative 

plants, I estimated habitat selection based on GPS fixes recorded for 16 individuals (6 males and 

10 females) in an urban forest. Specifically, I determined if nonnative plants are avoided when 

turtles establish their home range (i.e., second order selection) and when they use their home 

ranges (i.e., third order selection). For females, the density of four of the six most common 

nonnative plant species was lower in turtle locations than available locations across the study area 

(i.e., second order selection) and those within home ranges (i.e., third order selection). For males, 

the density of only one nonnative plant species was lower in turtle locations than available 

locations across the study area (i.e., second order selection), and none of the species were 

different between turtle locations and available locations within their home ranges (i.e., third 

order selection). These results suggests that eastern box turtles avoid some (but not all) species of 

nonnative plants and that females are more sensitive to nonnative plants than males. The 

displacement of animals from highly invaded areas represents a functional loss of habitat. The 

reduction in available habitat area may lead to reduction in carrying capacity of invaded areas, 

and therefore, may have long-term impacts on population persistence. 
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INTRODUCTION 

 

 

Globalized trade has intentionally and unintentionally transported thousands of species 

outside of their native range defined by natural dispersal limitations (Ollier and Bertelsmeier 

2022). Some of these species have spread rapidly, threatening biodiversity across the globe (Vilà 

et al. 2011). Globally, species invasions are thought to have contributed to 54% of all extinctions 

(Bellard et al. 2016a). Currently, 1,352 (27%) of all tetrapods are considered to be threatened by 

invasive species, mostly by fungi, animals, and plants (Bellard et al. 2016b). With continued 

spread and increase in abundance of nonnative species (Pyšek et al. 2020; Seebens et al. 2021), 

understanding the invasion impacts and underlying mechanisms of impacts remains critical for 

predicting impacts and informing efficient management (Stewart et al. 2021). 

Thousands of plant species have been introduced to areas outside of their native range 

around the world. Of which, 13,168 species have become naturalized, establishing self-sustaining 

populations (van Kleunen et al. 2015), and more than 1,000 species have become invasive, 

spreading, and increasing in abundance in their new habitat (Turbelin et al. 2017) even in 

protected areas (Miller et al. 2021). Nonnative plant species typically form dense, often 

monocultural stands by suppressing the establishment and the growth of native plant species 

through competition and allelopathic chemicals, exploiting untapped resources by native species, 

altering species interactions, and altering abiotic conditions (Qu et al. 2021). As the dominant 

primary producer in their new habitat, nonnative plants can affect animal communities not only 

by generating bottom-up effects through changes in the food base, but also by altering a suite of 

biotic (e.g., predation pressure) and abiotic (e.g., microclimate) characteristics of their habitat on 

which resident animals depend (Jones et al. 1994; Crooks 2002; Hayes and Holzmueller 2012). 

Studies examining the impacts that nonnative plants have on animals have increased 

substantially over the last few decades (Schirmel et al. 2016). Most of these studies have focused 

on population- or community-level impacts, revealing widespread changes (increase or decrease) 
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in the abundance and diversity of animals (Pyšek et al. 2012; Schirmel et al. 2016; Fletcher et al. 

2019). However, while these studies provide direct measures of the state of populations or 

diversity, which are of primary interest to conservation and management of native wildlife, 

revealing population- and community-level changes provides limited utility in uncovering the 

mechanisms underlying population and community change. Mechanisms of impacts at 

population- or community-level change can be discerned by examining effects and processes at 

the individual level (Crystal-Ornelas and Lockwood 2020). 

Animal behavior is important for understanding and predicting the impacts of human- 

altered environment on wildlife (Sole et al. 2013). The first response of individuals to an 

environmental change is often behavioral. The type of behavioral response (e.g., avoidance, 

attraction, or neutral) has the potential to affect survival and reproduction of individuals, and 

ultimately, key demographic parameters (e.g., birth, death, migration rate). Understanding 

behavioral responses could therefore provide insight into the mechanisms through which human- 

altered environment affects population persistence and community dynamics. Studies of 

behavioral impacts on human-altered environment are increasingly being recognized as important 

for informing conservation and management (Berger-Tal et al. 2011; Greggor et al. 2016). 

However, studies on the impacts of nonnative plants on animal behavior remain limited (Stewart 

et al. 2021). 

Eastern box turtles (Terrapene carolina carolina) have been experiencing population 

declines over the past several decades (Dodd 2001) and are listed as ‘vulnerable’ in the IUCN 

Red List (van Dijk 2011). Eastern box turtles are a terrestrial species inhabiting primarily mixed 

and hardwood forests in the eastern United States. Habitat loss resulting from the conversion of 

forests to anthropogenic land cover is considered a major threat (Nazdrowicz et al 2008; Graham 

et al. 2022). Furthermore, the eastern United States harbors more nonnative plants than other 

regions of the United States (Iannone et al. 2015; Oswalt et al. 2015), potentially contributing to 

box turtle declines through habitat change. 
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Eastern box turtles primarily use forests but may use fields (Stickel 1950; Fredericksen 

2014). They generally select areas with dense ground vegetation and woody debris (Greenspan et 

al. 2015; Harris et al. 2020; Parlin et al. 2017). There appear to be no difference in habitat use 

between female and male turtles, except during nesting season. Females typically nest in 

grassland, savanna, forest edge, and canopy gaps from May to early July (Congello 1978; Willey 

and Sievert 2012; Refsnider et al. 2023). Eastern box turtles are omnivorous and consume a wide 

range of food items, such as plants, mushrooms, and invertebrates (Figueras et al. 2021). Home 

range size vary among individuals and geographic locations, ranging from 0.2 to 113.1 ha, with 

females exhibiting larger home range sizes (Habeck et al. 2019; Roe et al. 2020). 

Impacts of nonnative plants on eastern box turtles are equivocal. McKnight (2011) found 

that eastern box turtles frequently use dense patches of multiflora rose (Rosa multiflora). 

However, Attum et al. (2016) found that eastern box turtles avoided habitat dominated by Amur 

honeysuckle (Lonicera maackii), as this species forms dense patches which limits sunlight 

availability (Collier et al. 2002). Also, McEvoy and Durtsche (2003) found eastern box turtles 

were only in habitat not dominated by Amur honeysuckle. Maes and Walton (2012) found only a 

few turtles in habitat dominated by autumn olive (Elaeagnus umbellata) and Amur honeysuckle. 

Discrepancy among these studies may be due to the difference in species (and associated growth 

form) in question or analytical approaches. A paucity of studies of impacts of nonnative plants on 

eastern box turtles (and animals in general) precludes identification of general pattern in impacts 

of nonnative plants (Stewart et al. 2021). 

The goal of this study was to understand the impact of nonnative plants on eastern box 

turtles. To determine if eastern box turtles avoid nonnative plants (1) the spatial distribution of 

nonnative plant density were determined, (2) characterized the space use pattern of eastern box 

turtles, and (3) estimated habitat selection by eastern box turtles in Winthrop Woods, a 28-ha 

forest in the Piedmont ecoregion of the southeastern United States. Habitat selection is a process 

by which animals choose a specific area to use among a set of available areas. It is thought to be 
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hierarchically ordered choices made by animals (Johnson 1980): selection of a geographic range 

(i.e., first order selection), selection a general area to live—a home range—within its range (i.e., 

second order selection), and selection different patches for a specific type of activity, such as 

foraging and nesting, in its home range (i.e., third order selection) (Johnson 1980). In this study, 

habitat selection was estimated for second and third order selection. To address the potential sex- 

specific responses, the space use and habitat selection of males and females were examined 

separately. Sex-specific responses may arise because of inherent differences in their life history 

requirements, usually associated with reproduction (Chen and Lue 2008; Fredericksen 2014). 

Eastern box turtles are classified as vulnerable / apparently secure (S3S4) in South Carolina 

(South Carolina Natural Heritage Program 2023). 

Winthrop Woods are invaded by multiple nonnative plants. The most conspicuous 

species forming largely monocultural patches include autumn olive (Elaeagnus umbellata), 

Chinese privet (Ligustrum sinense), bigleaf periwinkle (Vinca major), Japanese stiltgrass 

(Microstegium vimineum), Chinese wisteria (Wisteria sinensis), and golden bamboo 

(Phyllostachys aurea). Autumn olive is native to Asian and was introduced to the United States in 

the 1830s (Miller et al. 2010). Autumn olive fixes nitrogen (Gardner 1958) and produces 

allelopathic chemicals (Miller et al. 2010). It can grow up to 6 m and spread and dominate forest 

understory (Oliphant et al. 2017). Chinese privet is native to Asia and was introduced to the 

United States in 1852 (Enloe et al. 2018). It forms monotypic thickets and reduces understory 

vegetation and diversity (Cash et al. 2020).This shade tolerant species colonizes areas via root 

sprouts and seed dispersal by birds (Miller et al. 2010). Bigleaf periwinkle is native to southern 

Europe and northern Africa and was introduced to the United States for landscaping and medicine 

in the 1700s (Bossard et al. 2000; Miller et al. 2010). It is a scrambling or trailing vine and forms 

dense mats on the forest floor (Miller et al. 2010), which can shade out native plants (Bossard et 

al. 2000). Bigleaf periwinkle has been shown to affect body mass and reproduction of a reptile, 

possible due to change in microclimate associated with the dense growth of periwinkle (Downes 
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and Hoefer 2007). Japanese stiltgrass is native to Asia and was introduced to the United States in 

1919 (Fairbrothers and Gray 1972). It forms dense mats on the forest floor and can outcompete or 

suppress other plant species (Leicht et al. 2005; Oswalt et al 2007). Chinese wisteria is native to 

Asia and was introduced to the United States for landscaping in 1816 (Wells and Brown 2000). 

This liana species forms dense thickets that shade out other plants and strangles other woody 

plants (Hawthorne et al. 2015). Golden bamboo was introduced in 1882 (U.S. Department of 

Agriculture 2012) and forms dense monotypic thickets (U.S. Department of Agriculture 2012). 

Invasions of bamboo can cause decreases in plant biomass (Nelson et al. 2001). Understanding 

behavioral responses to these nonnative plants will help us identify species for management and 

predict effects of management practices (Hale et al. 2020). 

 
 

METHODS 

 

 

Study area 

 

This study was conducted at Winthrop Woods, which is located in the Piedmont 

ecoregion of Rock Hill, South Carolina. Winthrop Woods is situated within the Winthrop 

University Recreational and Research Complex and is bordered by residential area, open fields, 

and a two-lane road. Winthrop Woods is a mixed coniferous and deciduous forest dominated by 

oaks (Quercus spp.), eastern red cedar (Juniperus virginiana), sweetgum (Liquidambar 

styraciflua), and white ash (Fraxinus americana) (Department of Biology - Recreational & 

Research Complex … c2023). The Recreational and Research Complex was once a farm 

supplying produce (e.g., vegetables, dairy, and poultry) to the university community until 1956 

(Olson 1983; Unknown 1932/1937). The use of land for farming ceased by 1980 with the 

construction of athletic and recreational facilities. According to surveys in 1976, a half of what 

used to be an old field, pasture, or outdoor pig pens had regressed to a stand of tree saplings with 

dense understory with Japanese honeysuckles (Lonicera japonica), plums (Prunus spp.), and 
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briers (Smilax spp.) (Woodland Management Plan 1976). The remaining area was mostly 

composed of hardwood species of 30–80 years old (Woodland Management Plan 1976) (Figure 

1). 

 

 
Vegetation survey 

 

I surveyed vegetation from June–August 2021 in Winthrop Woods and adjacent areas in 

776, 5-m radius plots along east-west transect set up about 20 meters apart (Figure 2). In each 

plot, I identified all plants to genus or species and determined their abundances. Abundance of 

herbaceous species was recorded as an estimate of the percentage of ground cover, while the 

abundance of woody species was determined as the number of stems. The ground cover was 

estimated visually and determined by averaging the cover values from two or three field crews. 

 

 
Vegetation mapping: Kriging 

 

To map the spatial variability in nonnative species abundances, I used kriging to 

interpolate the value of abundance over a continuous spatial field over the entirety of Winthrop 

Woods. Kriging is a geostatistical interpolation technique that predicts unknown values from 

observed data at known locations. In ordinary kriging, values of unsampled locations are 

estimated as a weighted sum of measured values from neighboring locations using the equation 

(Armstrong and Boufassa 1988): 

𝑍̂(𝑥0) =∑𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 
 

where 𝑍̂(𝑥0) is an estimation of abundance at location 𝑥0, 𝑍(𝑥𝑖) a measured abundance value at 

location i in the neighborhood of location 𝑥0, and 𝜆𝑖 a weight for a measured value at the ith 

location, and n is the total number of sampled locations.  

Weights are determined based on the spatial distance of the measured points and the         

distances between measured points and the predicted location (𝑥0). The spatial dependence is the 
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degree of similarity in measured values as a function of distance and can be quantified using a 

variogram, which plots semivariance according to distance. Semivariance, 𝑦𝑦, is calculated as half the 

variance of the difference between observed values of a variable (abundance in this case) for all pairs 

of locations that are separated by a certain distance (𝑑) using the equation: 

 𝑦(𝑑) =
1

2𝑛(𝑑)
∑ [𝑧(𝑥𝑖) − 2(𝑥𝑖 + 𝑑)]2

𝑛(𝑑)

𝑖
, 

 

where z(𝑥𝑖) is the density at location 𝑥𝑖 and 𝑛(d) is the number of pairs of sampling locations 

separated by a distance. A mathematical model is fitted to observed variogram, and the 

covariance matrix derived from the model is solved to obtain kriging weights (𝜆𝑖). Kriging was 

implemented using the autoKrige function in the R package automap (Hiemstra 2013). 

 

 

 
Vegetation mapping: Inverse distance weighting 

 

Predictive maps for small vegetation patches outside of the main woods were produced 

with inverse distance weighting (IDW). I used IDW for small patches outside of Winthrop woods 

instead of kriging because kriging had a large amount of prediction errors. IDW has the same 

general equation as the ordinary kriging but differs from kriging in that data points are weighted 

by an inverse function of the distance, d, raised to the power value p: 

𝜆𝑖 =
𝑑𝑖
−𝑝

∑ 𝑑𝑖
−𝑝𝑛

𝑖=1

 

 

The value of p determines the rate at which the weights decrease with distance. The p was 

adjusted by visually cross validating the interpolation output with known distribution of a species. 

The IDW was implemented in using the gstat and interpolate functions in the gstat package in R 

(Pebesma 2004). 
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Radio Telemetry  

Movement was monitored for 16 adults (6 male, 10 female) equipped with radio transmitters. 

These transmitters have a battery life that can last from 7 to 24 months (RI-2B, Holohil Systems 

Ltd., Ontario, Canada; or R1850, R1680, or R2020, Advanced Telemetry Systems, MN, USA). 

Ten turtles were captured and equipped with transmitters during a previous study in 2018 and 

2019 (Graham et al. 2022). Eleven additional turtles were added for this study in 2020 and 2021. 

Individuals were visually located while walking throughout Winthrop Woods and its vicinity. All 

captured turtles were sexed based on sexually dimorphic characteristics, including concavity of 

the plastron, coloration, claw length, and relative position of cloaca (Burke 2011). All turtles were 

measured (straight line carapace length) and weighed with a spring scale (Pesola, AG, Barr, 

Switzerland) before attaching a transmitter. Transmitters were attached to the costal scute with a 

PC-7 nontoxic epoxy paste (Protective Coatings, Inc., Allenton, PA, USA). The turtles were held 

in captivity overnight to ensure curation of the epoxy. All individuals were released the next day 

at their original point of capture. 

Turtles were located once a month during inactive seasons (November–April) and 2–3 

times a week during active seasons (May–October) in 2020 and 2021 using a handheld radio 

receiver (R410) with a three-element Yagi antenna (Advanced Telemetry Systems, Isanti, MN, 

USA). Each turtle’s location was recorded with a handheld GPS unit (GPSMAP 64sc, Garmin, 

Ltd., Olathe, Kansas, USA). Animal handling procedures are approved by Winthrop University 

Institutional Animal Care and Use Committee (IACUC Control Number: 20003). 

 

 
Space use 

 

I used the dynamic Brownian bridge movement model (dBBMM) to estimate and 

visualize the space use patterns of eastern box turtles based on movement data collected by radio 

telemetry. I estimated the core area used by box turtles as 50% isopleth based on dBBMMs. The 

dBBMM predicts the probability of animal occurrence by accounting for the order of animal 
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locations (fixes), the distance and time elapsed between successive fixes, an estimate of the 

animal’s mobility, and spatial uncertainty of each fix (Kranstauber et al. 2012). The animal’s 

mobility (i.e., the Brownian motion variance) is estimated based on the degree of irregularity of 

the path of an animal between successive locations. The dBBMMs was implemented using the 

Brownian.bridge.dyn function in the package move in R (Kranstauber et al. 2019). 

 
 

Habitat selection 

 

To assess how nonnative plants affect home range selection (second order selection), I 

compared the density of nonnative plants at locations where turtles were located (“used 

locations”) to those at randomly selected locations across Winthrop Woods (“available 

locations”). How nonnative plants affect turtle use of areas within their home ranges (third order 

selection) was assessed by comparing the density of nonnative plants at used locations with those 

at available locations randomly sampled within their home ranges. The home range for each 

individual was defined as the 100% minimum convex polygon (MCP) including all locations 

recorded for each individual. MCP was constructed using the mcp function in the AdehabitatHR 

package in R (Calenge 2006). I generated 100 random available points per used point for both 

second order and third order selection analyses. 

I coded used locations as 1 and available locations as 0 and used this as a binary response 

variable to model habitat selection as a function of the density of nonnative plant species. By 

using generalized linear mixed models (GLMMs) with a binomial error distribution and logit link 

function. To account for individual differences in second and third order selection, models were 

constructed in a way to allow intercepts and slopes to vary by individual, that is, with random 

intercepts and slopes. Males and females were analyzed separately because of the potential sex 

differences in behavioral response. GLMMs were implemented using the glmmTMB function in 

the R package glmmTMB (Magnusson et al. 2017). 
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RESULTS 
 

 

 

Vegetation 

 

Of 116 plant species detected in the study area, 36.2% (42) were nonnative species. 

 

Nonnative species covered ca. 70% of the study area (Winthrop Woods and peripheral shrub and 

wooded areas). The most widespread and abundant nonnative species were autumn olive and 

Chinese privet, followed by Chinese wisteria, Japanese stiltgrass , and bigleaf periwinkle (Figure 

3). Golden bamboo was found only in a small discrete patch (Figure 3). Herbaceous species 

(Japanese stiltgrass and bigleaf periwinkle) occupied the perimeter of the woods, whereas lianas 

(wisteria) and shrubs (Chinese privet and autumn olives) had extended distributions in the interior 

of the woods. 

 
 

Radio telemetry 

 

I followed the 16 turtles a total of 1,048 times (mean ± SD = 61 ± 7 times; range = 47–72 

times) over 158 to 467 days (mean ± SD = 353 ± 111 days). All individuals were tracked for at 

least one full active season (May–October; Table 1. Tracked males (n = 6) averaged 13.6 cm (SD 

= 0.6) in carapace length and 415.3 g (SD = 50.0) in mass. Tracked females (n = 10) averaged 

 

12.2 cm (SD = 0.6) in carapace length and 382.7 g (SD = 70.2) in mass (Table 1). 

 

 

 
Space use patterns 

 

The core areas of the majority of females were situated outside dense growth of 

nonnative plants (Figure 4). The noteable exception was a female (Wednesday), whose 

occurrence was largely confined to a dense patch of Chinese wisteria. Another female was found 

frequently in moderate to dense growth of Chinese privet. Similarly, to females, core areas of 

most males were located outside of dense growth of nonnative plants (Figure 5). The only 

exception was a male whose core area overlapped substantially with a dense patch of Japanese 
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stiltgrass. No turtles were located in the bamboo patch; therefore, bamboo was excluded from the 

subsequent habitat selection analyses. 

 
 

Home range selection (second order selection) 

 

For female, abundance of autumn olive (z = -2.56, P = 0.001), bigleaf periwinkle (z = - 

3.95, P < 0.001), and Chinese wisteria (z = -2.02, P = 0.043) were lower at turtle locations than 

available locations within the study area. These three species exhibited relative selection strength 

<1, indicating avoidance of these species by female turtles in home range selection (Figure 6). 

There was little evidence for avoidance of Japanese stiltgrass (z = -0.09, P = 0.927) and Chinese 

privet (z = -1.20, P = 0.230) (Figure 6). 

For males, abundance of autumn olive (z = -2.16, P = 0.031) and possibly bigleaf 

periwinkle (z = -1.95, P = 0.051) were lower in turtle locations than available locations within the 

study area. These two species exhibited relative selection strength <1, indicating avoidance of 

these species by turtles in home range selection (Figure 7). There was little evidence of avoidance 

for Chinese privet (z = 0.28, P = 0.782), Chinese Wisteria (z = -1.22, P = 0.224), and Japanese 

stiltgrass (z = -1.88, P = 0.061) (Figure 7). 

 

 
Habitat selection within home ranges (third order selection) 

 

For females, abundance of the same nonnative plant species were lower in turtle locations 

than available locations within home ranges (autumn olive (z = -3.31, P <0.001), bigleaf 

periwinkle (z = -2.46, P = 0.014), and Chinese wisteria (z = -2.81, P = 0.005). These three species 

exhibited relative selection strength <1, indicating avoidance of these species by female turtles 

within their home ranges (Figure 8). There was little evidence for avoidance of Japanese stiltgrass 

(z = -0.16, P = 0.871) and Chinese privet (z = -1.49, P = 0.136) (Figure 8). 

For males, there was little evidence for avoidance of autumn olive (z = -0.70, P = 0.481) 
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bigleaf periwinkle (z = 0.44, P = 0.660), Chinese privet (z = -0.92, P = 0.357), Chinese wisteria (z 

 

= -1.42, P = 0.156), and Japanese stiltgrass (z = -1.47, P = 0.142) only within areas inside of their 

home ranges (Figure 9). 

 
 

DISCUSSION 

 

 

This study revealed negative spatial associations between nonnative plants and eastern 

box turtles. Such associations suggest that eastern box turtles avoid areas heavily invaded by most 

of the nonnative plant species. However, given that this study was not a controlled experiment, a 

causal interpretation needs caution. A negative spatial association between abundance of 

nonnative plants and turtle habitat use can result from an independent response of plants and 

turtles to a common environmental condition. That is, eastern box turtles may avoid the same 

environmental condition that promotes proliferation of nonnative plants. This scenario, however, 

is unlikely. Eastern box turtles, especially females, frequent in canopy gaps or open canopy areas 

(Agha et al. 2018; Flitz and Mullin 2006). The microenvironment in open areas promotes 

establishment and growth of many nonnative plant species (Brym et al. 2014; Daniels and Larson 

2019). Furthermore, an experimental study found that eastern box turtles colonized areas where 

nonnative plants were removed (Carter et al. 2015), which supports a causal role of nonnative 

plants in affecting habitat selection. 

At the scale of home range selection, locations used by eastern box turtles had lower 

density of nonnative plant species than available areas, suggesting that eastern box turtles avoid 

dense growth of nonnative plants in home range selection. Avoidance of Amur honeysuckle is 

documented in an eastern box turtle population (Attum et al. 2016). Avoidance of nonnative 

plants likely account for the previous reports that eastern box turtles were not found in areas 

dominated by Amur honeysuckle (McEvoy and Durtsche 2003) and that only a few individuals 

were found in areas dominated by Amur honeysuckle and autumn olive (Maes and Walton 2012). 
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Within home ranges, density of nonnative plants was lower in locations used by turtles 

than available locations, suggesting avoidance of nonnative plants within home ranges. In 

contrast, evidence of avoidance was not detected for Amur honeysuckle within the home range 

(Attum et al. 2016). The discrepancy may be attributable to the difference in plant species 

involved. In this study, Amur honeysuckle was a minor component in the study area, and 

therefore, not analyzed. For non-specialist herbivores, the growth form of plants is likely more 

relevant than the species identity. Because the growth form of Amur honeysuckle is similar to 

that of autumn olive, avoidance of Amur honeysuckle is expected. Alternatively, the discrepancy 

may be attributable to the difference in analytical approach between the studies. In Attum et al. 

(2016), males and females were lumped for analysis, and samples were mostly composed of 

males. In this study, within-home range selection was only evident in females. Thus, any 

responses that females might have had would be masked in Attum et al. (2016). 

The evidence of avoidance of nonnative plant species was overall more prevalent in 

females than males. Females and males may be affected differently by habitat change caused by 

nonnative plants because they often have different habitat requirements. Female turtles need to 

produce eggs and find nesting sites that provide favorable thermal conditions. Females may avoid 

areas with high density of nonnative plants because extensive shading by dense growth of 

nonnative plants may create an unfavorable thermal environment. Female turtles generally move 

to canopy gaps or open canopy habitat during nesting season, which takes place from May to 

June (Flitz and Mullin 2006; Willey et al. 2012; Fredericksen 2014). Frequent basking (Carrière 

et al. 2008) and maintenance of high body temperatures by gravid females (Chen and Lue 2008; 

Millar et al. 2012; Chandler et al. 2020) are documented for other species of turtles. Maintenance 

of high body temperatures is thought to promote egg development (Sarkar et al. 1996), 

embryogenesis, and energy assimilation for energy demanding reproduction in gravid females 

(Lefevre and Brooks 1995). Non-gravid females may also maintain high body temperatures for 

energy demanding preparation of ovarian follicles for the next reproductive year (Nutting and 
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Graham 1993). In habitat subjected to prescribed burning, female eastern box turtles shift their 

home ranges to areas where fire has made open understory covers, which provided higher 

temperatures and greater amounts of solar radiation (Roe et al. 2020). This suggests that females 

are more likely than males to respond to structural alterations that alter thermal environments. 

Negative associations between nonnative plants and eastern box turtles were detected for 

autumn olive, bigleaf periwinkle, Chinese wisteria, and golden bamboos, but not Japanese 

stiltgrass and Chinese privet. How animals respond to nonnative plants may depend on the type of 

habitat alteration caused by nonnative plants and the density of nonnative plants (Ceradini and 

Chalfoun 2017). For ectothermic animals, change in thermal property of habitat caused by dense 

growth of nonnative plants is hypothesized to be a common mechanism underlying the impacts of 

nonnative plants (Garcia et al. 2019). Autumn olive, bigleaf periwinkle, Chinese wisteria, golden 

bamboos, and Chinese privet form dense stands and lower temperatures of the surrounding air 

under their canopies (Bilcke et al. 2006; Campanello et al. 2007; Carter et al. 2015), potentially 

creating a suboptimal thermal environment (Valentine et al. 2007; Hacking et al. 2014). However, 

associations between turtle habitat use and Chinese privet were neutral on average, with a 

possible negative association in females. An ambiguous response to Chinese privet may be 

because the density of Chinese privet was not high compared to the other species. Cash et al. 

(2020) suggests that low to moderate density of privet likely has little effects on animals. 

The response to Japanese stiltgrass was highly variable among individuals; some 

individuals showed no association, whereas others showed positive or negative association with 

Japanese stiltgrass. The eastern box turtles are reported to be frequent in Japanese stiltgrass 

patches (Orr et al. 2020). Similar frequent use of Japanese stiltgrass patches were also noted in 

my study. Alternatively, the use of Japanese stiltgrass patches may be promoted by enhanced prey 

availability. Invertebrate abundance increased with increasing Japanese stiltgrass abundance 

(Landsman et al. 2021). The apparent lack of avoidance for Japanese stiltgrass may be associated 

with their small extent of invasion and variable density within invaded patches. Animals likely 
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have access to adjacent uninvaded or less dense areas without traveling far, which may allow 

animals to avoid any negative effects of Japanese stiltgrass. How the impacts of nonnative plants 

change with their extent and density is identified as a priority question for predicting and 

managing the impacts of nonnative plants on animals (Stewart et al. 2021). 

The avoidance of most nonnative plant species examined in this study indicates that 

eastern box turtles are prone to be displaced from areas dominated by nonnative plants, reducing 

the habitat area available to the turtles. With much of the turtle habitat being invaded by 

nonnative plants, the presence of nonnative plants may be a factor fueling the declines of eastern 

box turtles. An apparent sensitivity of females to nonnative plants raise concern about the 

population persistence in invaded habitat. Thus, the conservation and management of eastern box 

turtles will likely hinge on the reduction or removal of nonnative plants, with a priority on 

autumn olive (Elaegnus umbellata), bigleaf periwinkle (Vinca major), golden bamboo 

(Phyllostachys auera), and Chinese wisteria (Wisteria sinensis). Management of these species 

should be accompanied by restoration of native plant communities because eastern box turtles are 

typically associated with relatively dense ground-level vegetation (Stickle 1950). 
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TABLES 

 

 

Table 1. Morphometric and tracking summary for eastern box turtles (Terrapene carolina 

carolina) monitored in Winthrop Woods, Rock Hill, South Carolina through the summer 

of 2020 to the fall of 2021. 

 

Turtle 

 

Sex 

 

CL (cm) 

 

BM (g) 

 

Tracking period (Number of days) 

Number of 

 

locations 

Blinky M 13.9 432.6 07/18/2020 - 10/28/2021 (467) 69 

Cyprus F 12.2 452.6 05/10/2021 - 10/28/2021 (171) 58 

Donnie F 13 407.6 09/12/2020 - 10/28/2021 (411) 69 

Elvira F 12.4 397.6 10/02/2020 - 10/28/2021 (391) 64 

Euphrates F 12.8 497.6 05/10/2021 - 10/28/2021 (171) 54 

Jason M 12.4 327.6 10/16/2020 - 10/28/2021 (377) 62 

Johnny M 12 367.6 09/28/2020 - 10/28/2021 (395) 62 

Kerry F 12.7 442.6 10/02/2020 - 10/28/2021 (391) 65 

Lilac F 11.4 258.6 05/10/2021 - 10/23/2021 (166) 56 

Mikey M 13.3 457.6 09/12/2020 - 10/28/2021 (411) 48 

Red M 13.5 447.6 09/12/2020 - 10/28/2021 (411) 69 

Sam F 11.8 397.6 10/16/2020 - 10/23/2021 (372) 64 

Small Leg M 12.7 458.6 09/29/2020 - 10/28/2021 (394) 67 

Small Stuff F 12.8 307.6 07/18/2020 - 10/28/2021 (467) 63 

Sprinter F 11 317.6 07/18/2020 - 10/28/2021 (467) 72 

Wednesday F 12 347.6 10/16/2020 - 10/28/2021 (377) 59 

Notes: M, male; F, female; CL, carapace length; BM, most recent body mass. 
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FIGURES 
 

 

 

 

Figure 1. Geographic location of the study area in South Carolina, USA (left panel). Satellite 

image of Winthrop Woods located within Winthrop University Recreational Complex in the city 

of Rock Hill, South Carolina (right panel). 
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Figure 2. The distribution of 5 m radius vegetation plots (indicated with white dots) at Winthrop 

Woods, Rock Hill, South Carolina. 
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Figure 3. Interpolated distribution of densities of the most common nonnative plant species in 

Winthrop Woods and adjacent area in Rock Hill, South Carolina: (A) Elaegnus umbellate 

(autumn olive), (B) Ligustrum sinense (Chinese privet), (C) Microstegium vimineum (Japanese 

stiltgrass), (D) Phyllostachys auera (golden bamboo), (E) Vinca major (bigleaf periwinkle), and 

(F) Wisteria sinensis (Chinese wisteria). The color gradient of pink to red depicts the increase in 

species density (per 100 m2) for the species in the order listed above: 40, 80, and >120 stems; 

150, 250, and >350 stems; 40, 60, and >80%; 40, 60, and >80%; 40, 60, and > 80%; and 100, 

150, >200 stems. 

(F) (E) 

(C) (B) (A) 

(D) 
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Figure 4. Core home range (estimated as 50% isopleth based on dynamic Brownian Bridge 

Movement Models) of female eastern box turtles overlain on interporated distribution densities of 

nonnative plant. The home ranges are indicated in colored polygons. For plant densities, the color 

gradient of pink to red depicts the increase in density (see Figure 3 for the density gradient). 

(A) Elaegnus umbellate (autumn olive), (B) Ligustrum sinense (Chinese privet), (C) 

Microstegium vimineum (Japanese stiltgrass), (D) Phyllostachys auera (golden bamboo), (E) 

Vinca major (bigleaf periwinkle), and (F) Wisteria sinensis (Chinese wisteria). 

(F) (E) 

(C) (B) (A) 

(D) 
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Figure 5. Core home range (estimated as 50% isopleth based on dynamic Brownian Bridge 

Movement Models) of male eastern box turtles overlain on interporated distribution densities of 

nonnative plant. The home ranges are indicated in colored polygons. For plant densities, the color 

gradient of pink to red depicts the increase in density (see Figure 3 for the density gradient). 

(A) Elaegnus umbellate (autumn olive), (B) Ligustrum sinense (Chinese privet), (C) 

Microstegium vimineum (Japanese stiltgrass), (D) Phyllostachys auera (golden bamboo), (E) 

Vinca major (bigleaf periwinkle), and (F) Wisteria sinensis (Chinese wisteria). 

(F) (E) 

(C) (B) (A) 

(D) 
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Figure 6. Relative selection strength for the second-order selection by female eastern box turtles 

estimated with generalized linear mixed effects models with five nonnative plant species: 

WISSIN (Chinese wisteria), Wisteria sinensis; VINMAJ (bigleaf periwinkle), Vinca major; 

MICVIM (Japanese stiltgrass), Microstegium vimineum; LIGSIN (Chinese privet), Ligustrum 

sinense; ELAUMB (autumn olive), Elaegnus umbellate. Selection for a species is inferred when 

RSS >1 and avoidance when RSS <1. Circles and error bars represent a mean and a 95% 

confidence interval. 
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Figure 7. Relative selection strength for the second-order selection by male eastern box turtles 

estimated with generalized linear mixed effects models with five nonnative plant species: 

WISSIN (Chinese wisteria), Wisteria sinensis; VINMAJ (bigleaf periwinkle), Vinca major; 

MICVIM (Japanese stiltgrass), Microstegium vimineum; LIGSIN (Chinese privet), Ligustrum 

sinense; ELAUMB (autumn olive), Elaegnus umbellate. Selection for a species is inferred when 

RSS >1 and avoidance when RSS <1. Circles and error bars represent a mean and a 95% 

confidence interval. 
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Figure 8. Relative selection strength for the third-order selection by female eastern box turtles 

estimated with generalized linear mixed effects models with five nonnative plant species: 

WISSIN (Chinese wisteria), Wisteria sinensis; VINMAJ (bigleaf periwinkle), Vinca major; 

MICVIM (Japanese stiltgrass), Microstegium vimineum; LIGSIN (Chinese privet), Ligustrum 

sinense; ELAUMB (autumn olive), Elaegnus umbellate. Selection for a species is inferred when 

RSS >1 and avoidance when RSS <1. Circles and error bars represent a mean and a 95% 

confidence interval. 
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Figure 9. Relative selection strength for the third-order selection by male eastern box turtles 

estimated with generalized linear mixed effects models with four nonnative plant species WISSIN 

(Chinese wisteria), Wisteria sinensis; VINMAJ (bigleaf periwinkle), Vinca major; MICVIM 

(Japanese stiltgrass), Microstegium vimineum; LIGSIN (Chinese privet), Ligustrum sinense; 

ELAUMB (autumn olive), Elaegnus umbellate. Selection for a species is inferred when RSS >1 

and avoidance when RSS <1. Circles and error bars represent a mean and a 95% confidence 

interval. 
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