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ABSTRACT 
 

The regulation of heart development is an area of research that has important implications 
for the future treatments of heart injuries. Cardiomyocytes, or cardiac muscle cells, stop 
proliferating after birth, which limits the adult heart in its ability to repair damaged tissue 
after injury. The use of targeted therapies to treat heart injury through regenerative 
mechanisms requires an extremely detailed understanding of the regulatory pathways 
responsible for directing proliferation of cardiomyocytes during heart development. 
Interactions between cardiomyocytes in the myocardium with endothelial cells of the 
endocardium during development are known to occur through cell-cell interactions, 
including the action of diffusible cell signaling factors. The loss of FoxO1 expression in 
endothelial cells was shown to disrupt the signaling interactions of endothelial cells and 
cardiomyocytes (Sengupta et al., 2012) indicating that FoxO1 may be involved in the 
regulated the signaling pathways between these two cell types. In addition, the growth 
factors Neuregulin (NRG-1) and IGF-1 are known to mediate the proliferation of 
cardiomyocytes during heart development (Tian & Morrisey, 2012). FoxO1 has also been 
shown to regulate many signaling pathways that are involved in controlling cell 
proliferation, including other growth factor pathways. The purpose of this study was to 
investigate the role of FoxO1 in endothelial-cardiomyocyte interactions in an in vitro 
cell co-culture model system to determine if FoxO1 has regulatory roles in 
cardiomyocyte proliferation via endothelial-myocardial signaling. In this study, we 
focused on the regulatory role of FoxO1 in NRG-1 expression and the effects of altered 
NRG-1 expression on the interactions between endothelial cells and cardiomyocytes in 
the co-culture model. We found that a lack of FoxO1 expression did affect the gene 
expression of NRG-1, as well as IGF-1 and their respective receptors, ErbB2/ErbB4 and 
IGF-1R. Interestingly, we also found a difference in the gene expression of our control, 
depending on whether they were treated with a control siRNA scramble sequence or if 
they were untreated.  A clear understanding of endothelial-cardiomyocyte signaling is 
essential to further development of therapeutic treatments for cardiovascular defects and 
disease.   
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1.   INTRODUCTION 

Cardiovascular disease (CVD) is the leading cause of death, not only in the 

United States, but worldwide. According to data presented by the American Heart 

Association from 2013, CVD results in 2200 deaths per day in the United States. CVD 

was responsible for more than 17.3 million deaths per year worldwide and is estimated to 

grow to more than 23.6 million by 2030 (Mozaffarian et al., 2014). Congenital birth 

defects are the leading cause of deaths in infants and the most common types seen in 

newborns are heart defects. Congenital heart defects occur in about 9 in every 1000 births 

(Schleich et al., 2013). Diseases and congenital defects of the heart share the 

characteristics of structural and functional malformations of the myocardium. Clinical 

treatments of cardiovascular injury are challenging due to the complexity of the 

cardiovascular system. There are several specialized cell types in the cardiovascular 

system but there is one cell type in particular that plays a critical role in the development 

and proper functioning of the heart, itself. Cardiomyocytes are the cells responsible for 

forming the heart muscle, or myocardium, and are specified as atrial or ventricular 

myocytes (Epstein, 2010). Though cardiomyocytes are just one example of the 

specialized cells found in the cardiovascular system, they are particularly notable for their 

role in myocardial development as a critical component of proper heart functioning, as 

well as for their significant implications in diseases and defects of the heart.  

In humans, cardiomyocytes proliferate throughout embryogenesis then withdraw 

from the cell cycle after birth, completely losing their proliferative abilities. When 

cardiomyocytes stop proliferating, growth of the myocardium stops as well. This 
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cessation of growth results in the heart’s inability to repair any damaged tissue sustained 

during injury, which often leads to loss of function. Importantly, loss of function in the 

myocardium is associated with several types of heart disease and congenital heart defects. 

Therefore, it is no wonder that studies seeking a better understanding of myocardial 

proliferation and the possible regeneration of a functional myocardium receive a great 

deal of attention (Xin et al., 2013).  

1.1  Heart Development  

The heart is the first organ to develop and begin functioning in vertebrate 

embryogenesis. The developmental processes responsible for the formation of the heart 

are referred to as cardiogenesis. Cardiogenesis is mediated by strict transcriptional gene 

regulation and elaborate cellular signaling pathways that result in embryonic heart 

formation. (Xin et al., 2013). Cardiogenesis begins about day 16 following the formation 

of the three embryonic germ layers: endoderm, mesoderm and ectoderm. The heart is 

formed from the anterior mesoderm, which gives rise to precardiac cells. Precardiac cells 

are multipotent and have the ability to differentiate into the various cell types observed in 

the mature heart. Precardiac cells also form the cardiogenic crescent, or the first heart 

field. The cells of the first heart will migrate anteriorly then fuse at the midline of the 

embryo, forming a linear primitive heart tube (Xin et al., 2013).  

The primitive heart tube is comprised of three cardiac layers: the myocardium, the 

endocardium and the epicardium. The outer layer is formed by epicardial cells, the 

myocardium forms the bulk of the heart, and a layer of cardiac jelly exists between the 

endocardial layer that forms the lumen of the heart. The heart tube will undergo a process 
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called looping to spatially position the future chambers of the heart. During this process, 

the myocardium induces the cells of the endocardium to detach and migrate into the 

cardiac jelly. These cells will migrate into the cardiac cushions to undergo differentiation 

and become parts of the heart valves (Schleich, 2013). As looping continues, the 

epithelial proepicardium will migrate to the myocardium’s surface. Through rapid 

proliferation, proepicardial cells will cover the surface of the myocardium. These cells 

will make up the epicardium and pericardium. Some epicardial cells are able to 

delaminate and undergo epithelial-to-mesenchymal transitions to form mesenchymal cells. 

These mesenchymal cells are able to give rise to smooth muscle , vascular endothelial 

cells and fibroblasts involved in the coronary vasculature (Smith, Bader, 2007). After 

looping occurs, the heart tube will undergo convergence and wedging to produce a fully 

septated heart. A second population of cardiac cells, known as the second heart field, will 

migrate into the pharyngeal regions of the embryo. Cells derived from the second heart 

field contribute to the walls of the atria and atrial septum, muscular portions of the 

systemic and pulmonary veins, the outflow tract and the muscular base of the aorta and 

pulmonary arteries (Schleich, 2013).  

There are three distinct developmental steps required for the proper maturation of 

a four-chambered heart. The first step is the trabeculation of the myocardium, which 

forms the defined trabeculae of the ventricle. Trabeculation is responsible for maintaining 

embryonic blood flow during the early stages of cardiogenesis. The second step is the 

formation of endocardial cushions, valves and septa. Endocardial cushions are formed 

from cells of the endocardium that undergo endocardial-mesenchymal transition to 
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become mesenchymal cells. The mesenchymal cells migrate into the cardiac jelly and 

push the endocardium into the cardiac lumen. The resulting protrusions give rise to the 

endocardial cushions. These cushions will eventually result in the formation of the 

cardiac valves and septa. The third step is myocardial compaction accompanied with 

coronary vasculature formation. The outer myocardial layers become more compact 

during later stages of development. During the process of compaction, this compact zone 

will go from a thickness of about two myocardial cells to a multilayered wall of cardiac 

cells. The compact zone will also go from being avascular to having angioblasts form 

vascular tubes from the epicardium. Thickening of the myocardium is the first sign of 

vascularization in the embryonic heart of vertebrates. The epicardium’s ability to undergo 

epithelial-mesenchymal transition is thought to be the heart’s major source of fibroblasts, 

coronary endothelium as well as vascular smooth muscle cells (VSMC). In addition, the 

proepicardium, the embryonic structure giving rising to the epicardium, has proved to 

have critical roles in paracrine signaling for development of the myocardium. Among 

these paracrine signals, the epicardium secretes growth factors to stimulate the 

myocardium to proliferate myocytes in the compact myocardial wall (Tian & Morrisey, 

2012).  Trabeculation, endocardial cushion formation, and myocardial compaction are all 

required for proper formation of the four-chambered heart and importantly, each step 

requires endocardial and myocardial signaling.  

1.2  Endocardial-Myocardial Signaling 

Signaling interactions between the endocardium and the myocardium have been 

implicated in several critical processes in cardiogenesis. Similar to the myocardium, the 
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endocardium is derived from cardiac mesoderm, separating itself out from the linear heart 

tube. The endocardium serves as an important source of mesenchymal cells for the 

development of cardiac valves due to its ability to undergo endothelial-mesenchymal 

transition. The endocardium has many essential roles throughout heart development, 

including one of the earliest critical processes of heart trabeculation. After the cardiac 

linear heart tube develops and undergoes looping to align the chambers of the heart, the 

heart will undergo trabeculation which helps direct blood flow and increase contractility. 

The significance of trabeculation as a result of myocardial and endocardial signaling can 

be demonstrated by a specific zebrafish mutation, Cloche, which affect both endothelial 

and hematopoietic lineages. Cloche mutant zebrafish lack the endocardium and many 

other endothelial cells, making them a model organism to study the endocardium’s role in 

trabeculation. Cloche mutants failed to develop ventricular trabeculi, which caused 

reduced contractility, distended atria and collapsed ventricles (Stainer et al., 1995). 

Therefore, signaling between the myocardium and endocardium is an absolute 

requirement for proper formation and functioning of the heart. 
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Figure 1: Cell signaling between endothelial cells of the endocardium and cardiomyocytes of 
the myocardium. Boxes highlight the pathways focused on in this paper.   

There are several important gene networks and signaling pathways involved in the 

cross-talk between endothelial cells of the endocardium and cardiomyocytes of the 

myocardium (Figure 1). While some of the signaling components have been identified, 

many details regarding the exact signals involved in heart development are not yet known. 

Neuregulin (NRG)-1/ErbB2/B4, fibroblast growth factor (FGF)-9, -16, -29, Notch, 

vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1) are all known to 

have essential roles in the maturation and function of myocardial cells (Smith & Bader, 

2007). 

Neuregulin 1 (NRG-1) has been shown to have particularly critical roles in the 

development of the myocardium. Endocardial cells synthesize NRG-1 to promote 

myocyte survival and proliferation by stimulating co-receptors, ErbB4 and ErbB2, 

expressed on adjacent cardiomyocytes. During development, it has been shown that 

NRG-1 activation of the ErbB2/ErbB4 complex is required for the process of 

Adapted from Tian & Morrisey, 
Circulation Research, 2012 
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trabeculation. It is also known that NRG-1/ErbB4 interactions promote differentiated 

cardiomyocytes proliferation in the mature heart (Lee et al., 1995). Increased expression 

of ErbB4 was shown to enhance proliferation of cardiomyocytes, while a global loss of 

ErbB4 receptor caused a decrease in proliferation in cardiomyocytes. Studies have also 

demonstrated the importance of NRG-1 and the ErbB2/ErbB4 complex, each as 

individual components. For example, the global loss of NRG-1 in mice results in absence 

of trabeculation, failure of myocardial maturation and embryonic lethality, as seen with 

Cloche mutants (Lai, et al., 2010). In addition, null alleles for either the ErbB2 or ErbB4 

receptors resulted in normal heart tube formation followed by normal looping but no 

trabeculation.  

It is important to note that NRG-1 is only able to induce proliferation in 

differentiated, mononucleated cardiomyocytes, not binucleated cardiomyocytes. After 

birth, cardiomyocytes become binucleated and withdraw from the cell cycle. This led to 

the thought that adult cardiomyocytes are incapable of proliferating due to a specific 

inability to perform cytokinesis, which is a key step in the mitotic cell cycle (Bersell et al., 

2009). The presence of NRG-1 induces the disassembly of sarcomeres to facilitate 

cytokinesis, which is similar to the induction of proliferation through p38 inhibition by 

FGF-1. The activation of PI3K is a common mechanism by which NRG-1, FGF-1 and a 

third growth factor, Insulin-like growth factor 1 (IGF-1) are able to stimulate 

cardiomyocyte proliferation. Activation of PI3K leads to the activation of PDK1 and Akt, 

which promotes cell cycle entry, DNA synthesis and cytokinesis. The PI3K pathway is 

also known to regulate FoxO1 transcription factor. FOXO proteins are a family within the 
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Forkhead Transcription factors family. They have various kinds of roles but many are 

found to control essential cellular processes including proliferation, apoptosis, 

metabolism and differentiation (Wang et al., 2014). FoxO1 has also been shown to induce 

expression CKIs, including p21cip1 and p27kip1, to inhibit cell proliferation (Sengupta et 

al., 2013).  PI3K activates AKT, which is then able to directly phosphorylate FoxO1 and 

cause translocation of FoxO1 from the nucleus to the cytoplasm, thus inhibiting gene 

transcription (Xin, 2013). This pathway is summarized in Figure 2.   

IGF-1 has been shown to have synergistic effects with NRG-1 in the heart. IGF-1 

is synthesized by endothelial cells and binds to IGF-1 receptor (IGF-1R) on 

cardiomyocytes, though significant effects on cardiomyocyte development have not been 

observed by IGF-1 alone (Bersell et al., 2009). When IGF-1 interacts with NRG-1, they 

synergistically promote cardiomyocyte proliferation in the ventricles. These two growth 

factors simultaneously increase the amount of DNA synthesis in cardiomyocytes while an 

increase in the endocardial cushions and atrioventricular cushions are observed as well 

(Smith & Bader, 2007).  
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Figure 2: Schematic of PI3K/AKT Pathway. Growth factors like NRG-1 and IGF-1, bind to 
their receptors on the cell membrane of cardiomyocytes to activate PI3K/AKT pathway, thereby 
inactivating FOXO transfection factors. FOXO transcription factors, including FoxO1, regulate 
the expression of target genes, such as p27kip1, p21cip and p57kip2, in turn regulating cell 
proliferation and maturation.  

The genomic loss of FoxO1 expression in mice (Tie2/Cre/FoxO1-/-) results in 

heart malformations that lead to embryonic lethality at embryonic day 10.5 (E10.5) due 

to cardiovascular failure (Figure 3). Recent studies using cell-type specific loss of FoxO1 

expression have indicated that FoxO1 is required in endothelial cells for proper heart 

development but it is not required in cardiomyocyte cells (Sengupta et al., 2012). Further 

research must be done to determine the signaling pathways that are involved in FoxO1 

regulation of cardiomyocyte proliferation. 
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Figure 3: Embryonic lethality demonstrated by knockout of FoxO1 due to cardiovascular 
failure. NT: no treatment, KO: FoxO1 knock out a) Normal murine embryo at E10.5. Arrow 
shows normal heart development b) Growth retardation and heart malformation (indicated by 
arrow) in Tie2/Cre/FoxO1-/- KO embryo at E10.5. c) Pericardial edema (indicated by asterisk) 
demonstrated in Tie2/Cre/FoxO1-/- KO embryonic lethality at E10.5. Arrow shows malformation 
of heart.  

1.3  Rationale  

 It is known that loss of FoxO1 in endothelial cells results in extreme 

morphological defects in embryos, growth retardation in overall embryonic development,  

heart failure and embryonic lethality by E11.  FoxO1 mutant embryos also lack 

trabeculation of myocardium, have hypoplastic endocardial cushion formation and a very 

thin compact layer of myocardium.  However, in contrast, specific loss of FoxO1 in 

cardiomyocytes does not have any phenotypic effects on myocardial development 

(Sengupta et al., 2012). Therefore, it can be concluded that FoxO1 is required in 

endothelial cells for normal endocardial signaling to adjacent cardiomyocytes to maintain 

proper cardiovascular function but FoxO1 is not required by cardiomyocytes. It is 

thought that growth factors including NRG-1 and IGF-1 may have roles in activating the 
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PI3K/AKT signaling pathway, which is thought to deactivate FoxO1 by inducing 

translocation from the nucleus to the cytoplasm. However, the exact signaling pathways 

that result in the cardiovascular defects observed in endothelial-specific loss of FoxO1 

are not yet known.  

In my project, I aimed to further investigate the role of FoxO1 during 

cardiovascular development by observing the effects of loss of FoxO1 expression on the 

signaling interactions between cardiomyocytes and endothelial cells. Though it is known 

that FoxO1 in endothelial cells is required for proper signaling, though the specific 

mechanism responsible for these interactions are not known. The purpose of this study 

was to investigate the role of FoxO1 in endothelial-cardiomyocyte interactions in an 

in vitro cell co-culture model system to determine if FoxO1 has regulatory roles in 

cardiomyocyte proliferation via endothelial-myocardial signaling. I used siRNA 

(small interfering RNA) for a cell type-specific silencing of FoxO1 expression in 

endothelial cells to study the implications that endothelial-specific loss of FoxO1 has on 

cardiomyocyte-endothelial cell signaling. Transfection of FoxO1 siRNA allowed for the 

cell-type specific removal of FoxO1 expression in an in vitro model system, similar to the 

in vivo study conducted in the paper ‘FoxO1 is required in endothelial but not 

myocardial cell lineages during cardiovascular development’, with the use of Tie2Cre 

transgenic mice (Sengupta et al., 2012).  

I also investigated the signaling of NRG-1 between cardiomyocytes and 

endothelial cells to determine if cardiomyocyte proliferation and heart development could 

possibly be mediated through the PI3K/AKT signaling pathway. Recent studies have also 
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shown that NRG-1 has the ability to promote cardiac regeneration after ischemic injury 

by inducing proliferation via ErbB4 receptor stimulation. Therefore, NRG-1 and its 

ErbB4 receptors may be potential targets for therapeutic techniques to repair heart 

damage following cardiac injury (Tian & Morrisey, 2012). I investigated the gene 

expression of IGF-1 and its receptor IGF-1R, since studies have indicated that IGF-1 

works synergistically with NRG-1 in heart development (Evans-Anderson, et al., 2008). 

There is a tremendous amount of clinical significance in studying the interactions 

between endothelial cells and cardiomyocytes. Cardiovascular disease and congenital 

heart defects have extensive effects across the United States and communities around the 

world. Cell-based regenerative approaches in therapeutic techniques point to promising 

new clinical treatments of cardiac injury (Alexander & Bruneau, 2010). These therapies 

aim to transplant stem cells into injured hearts to repair the cardiac tissue damage 

associated with heart disease or congenital heart defects with new, functional cardiac 

cells. Therefore, the key to discovering therapeutic methods of regenerating the heart is 

through a deeper understanding of the specific cell signaling that occurs between the 

myocardium and the endocardium during heart development.  

1.4 Specific Aims  

1. To develop a co-culture model system using cardiomyocytes and endothelial cells, 

creating an in vitro environment that emulates the conditions of early 

cardiovascular development in vivo. 
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 I developed a co-culture model of cardiomyocytes and endothelial cells to study 

the cell signaling interactions that occur between the two cell types (Figure 4). Co-

culture model systems create a 3D cellular environment for the cultures to grow and 

interact with their surroundings. 2D cell culture models are inadequate when compared to 

3D culture models in the way they allow cells to attach, grow, affect their morphology 

and overall function. By using a 3D culture model via Transwell inserts, the 

cardiomyocytes and the endothelial cells were able to communicate in similar ways as 

they would in vivo. The Transwell insert provide permeable support for the cell cultures 

and allow for the analysis of the individual cell types, the cell matrix media and the cell 

lysates that accumulated over the duration of the co-culture (Sanyal, 2014).  

 
Figure 4: Cardiomyocyte and Endothelial Cell Co-Culture Schematic. 

Katrina Harmon, 2013 
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2. To examine the activity of growth factor Neuregulin in co-cultures that 

contain control endothelial cells and cardiomyocytes in comparison to the co-

cultures that contain treated endothelial cells that lack FoxO1 expression. 

 I analyzed the expression of NRG-1 in endothelial cells and ErbB2/ErbB4 

receptors in cardiomyocyte cells in both co-cultures containing treated endothelial cells 

with silenced FoxO1 expression as well as control endothelial cells with normal FoxO1 

expression. Quantitative analysis of the various gene expression levels was performed by 

real time Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR). I also analyzed 

the gene expression of IGF-1 and IGF-1 receptor. Altogether, the aim of this analysis was 

to determine whether FoxO1 expression affects NRG-1 signaling during heart 

development. I hypothesized that there would be a decrease in the level of NRG-1 

expression between cardiomyocytes and endothelial cells in co-cultures with endothelial 

cells that lack FoxO1 expression compared to co-cultures with control endothelial cells, 

thus resulting in decreased cardiac myocyte proliferation.    

 Identification of the effects of FoxO1 expression on cell signaling between 

endothelial cells and cardiomyocytes would disclose important information about the 

detailed processes that occur during heart development. Furthermore, the elucidation of 

specific signaling events involved in the regulation of cardiomyocyte proliferation is 

necessary to further investigate the induction of cardiomyocyte proliferation in the adult 

heart as a possible regenerative mechanism in the treatment of heart injury.  
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2.   METHODS 

2.1 Cell Culture 

HL-1 Cell Line  

 HL-1 murine cardiomyocyte cell line was previously obtained from Dr. William 

C. Claycomb’s Laboratory at Louisiana State University. A special preparation of growth 

media is required for the HL-1 cells: Claycomb medium, which was obtained from JRH 

Biosciences and the bottle must be wrapped in aluminum foil due to its light sensitivity. 

The media will be supplemented with 10 mL of Fetal bovine serum (FBS), 1 mL of 

penicillin (100 U/mL), 1 mL of streptomycin (100 µg/mL), 1 mL of Norepinephrine 

(10mM stock) and 1 mL of L-Glutamine (200 mM stock). I will be following all of the 

HL-1 Specific Procedures on Cell Culturing, Passage, Freezing and Thawing provided by 

Dr. Claycomb’s Laboratory. See Appendix 1 for detailed description of the procedures 

(Claycomb, not dated). 

C166 Cell Line 

 C166 murine endothelial cell line was previously purchased from ATCC (#CRL-

2581). I followed the cell culturing protocol provided by Dr. Evans-Anderson as well as 

the guidelines provided by ATCC upon purchase, both of which can be found in 

Appendix 2. According to these procedures, the following materials are required for 

proper C166 cell culturing and were purchased from ATCC: one bottle Trypsin-EDTA 

solution 1X, five bottles of Dulbecco’s Phosphate Buffered Saline (D-PBS), one bottle 
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Fetal Bovine Serum, five bottles of Dulbecco’s Modified Eagle’s Medium (DMEM) and 

1 bottle of Dimethylsulfoxide (DMSO).  

C166 cells and HL-1 cells were cultured individually to increase the population of 

each cell type. Cell cultures were grown to confluence and then split until we obtained a 

sufficient amount of cells to implant into each co-culture model.  

2.2 Co-Cultures Models 

Polyethylene Transwell-Clear 0.4 µm pore size inserts (Corning; catalog# 3450) 

were used to construct the 3D cell culture model. HL-1 cells were placed on the bottom 

of the culture model, on the 6-well plate surface. The C166 cells were suspended in the 

wells, on the surface of the inserts. This cell culture set up enables cell-cell 

communication between the HL-1 and C166 cells, while allowing the separation of the 

two cell lines for analysis. The cells were placed into the co-culture model following 

C166 siRNA transfection, which is explained in the following section.   

Insert Pore Size Optimization  

 Optimal Transwell insert pore size was determined by culturing C166 cells on  

0.4 µL pore size inserts and 3 µL pore size inserts, then comparing cell growth between 

the two sizes. Inserts were also removed to evaluate if cells were able to move past the 

insert and into the bottom of the 6-well plate. 

Cell Culture Media Optimization  

 Cell media optimization experiments were performed to evaluate the response of 

HL-1 cells and C166 cells when exposed to Supplemented DMEM and Supplemented 
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Claycomb Media, respectively. Cell growth was evaluated at different media volumes 

for the HL-1 and C166 co-culture design. Based on Transwell’s recommended volumes 

for the 6-well plates as well as the inserts, 1 mL, 1.5 mL and 2 mL of media were added 

to three different wells containing HL-1 cells on 6-well plate and C166 cells on the 

inserts. After 24-48 hours, inserts were placed into empty wells to evaluate the growth of 

both cell types individually. 

Cell Volume Optimization 

Cell growth was evaluated at different cell volumes for both HL-1 and C166 cells. 

Based on Transwell’s recommended volumes for the 6-well plates as well as the inserts, 

250 µL, 500 µL and 1 mL volumes of HL-1 cells were added to the 6-well plate, as well 

as C166 cells to the inserts. After 24-48 hours, the inserts were placed into empty wells to 

evaluate the growth of both cell types individually.  

2.3 siRNA silencing of FoxO1 Expression 

SignalSilence FoxO1 siRNA II from Cell Signaling was used to reduce or remove 

FoxO1 signaling from the endothelial cells. This allowed for the observation of changes 

in cell-cell communication between cardiomyocytes and endothelial cells, depending on 

endothelial cell treatment. The first control group of endothelial cells that did not undergo 

transfection at all (E4-NTC). The second control group of endothelial cells did undergo 

transfection but received a control scramble siRNA that did not induce a change in 

FoxO1 expression (E3-SiC). Two treatment groups of endothelial cells were transfected 

and received the FoxO1 siRNA to reduce or remove the proteins expression (E1-SiF and 
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E2-SiF). 100nM of FoxO1 siRNA was used to transfect the endothelial cells using 

Lipofectamine 2000 from Invitrogen. The cardiomyocytes did not receive any 

transfection. The three experimental groups were then cultured under normal cell 

culturing conditions for 24 hours post-transfection before they were transferred to the co-

culture model, where all cells were treated with Claycomb media and incubated for 48 

hours. Detailed transfection procedures were provided by Dr. Evans-Anderson and can be 

found in the Appendix 2. 

Sample 
Abbreviations Cell Type Treatment 

E1-SiFx Endothelial  FoxO1 siRNA to silence FoxO1 gene expression; Group 1 
E2-SiFx Endothelial FoxO1 siRNA to silence FoxO1 gene expression; Group 2 
E3-SiC Endothelial SiRNA Control   
E4-NT Endothelial No Treatment Control  

C1+E1-SiFx Cardiomyocyte Co-cultured with Group 1 Endothelial cell + FoxO1 siRNA  
C2+E2-SiFx Cardiomyocyte Co-cultured with Group 2 Endothelial cell + FoxO1 siRNA 
C3+E3-SiC Cardiomyocyte Co-cultured with Endothelial cell + Control siRNA 
C4+E4-NT Cardiomyocyte Co-cultured with Endothelial cells with No Treatment 

Table 1: Experimental Group Identification. Details for the experimental groups, indicating 
sample abbreviation, cell type and specific treatment.   

2.4 Western Blot Analysis  

Western Blot Analysis is used to detect the presence of a specific protein in a 

sample by using gel electrophoresis to separate proteins based on their 3D structures and 

size (Lenico Technologies). This process is done by using primary antibodies to bind to a 

target protein, followed by the binding of a secondary antibody, which is conjugated with 

peroxidase. When the secondary antibody is exposed to the substrate contained in the 

ECL reagents, the conjugated peroxidase cleaves the substrate to emit light. This light is 
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detected by the blot reader and creates an image seen in Figure 6, with bands indicating 

presence of target genes.  

Western blot analysis was used to confirm that FoxO1 expression had been 

reduced or removed following siRNA transfection into endothelial cells. Lanes 2-4 

contained cell samples isolated 24 hours post-transfection, while Lanes 5-7 contained cell 

samples isolated 48 hours post-transfection. FoxO1 primary antibody was purchased 

from Cell Signaling (Product Number-C29H4) to bind to any FoxO1 proteins that was 

present in the sample. A 1:1000 dilution was prepared for FoxO1 primary antibody in 1% 

milk/TBS , as the manufacturer’s suggested dilution range was 1:1000 to 1:50,000 

dilution range from a 1 mg/mL stock. Anti-Rabbit HRP conjugated secondary antibody 

was purchased from Santa Cruz Biotechnology. A 1:10000 dilution was prepared for the 

secondary antibody in 1% milk/TBS, as the manufacturer’s suggested dilution range was 

1:50,000 to 1:250,000 from a 1 mg/mL stock. PierceTM Enhanced Chemiluminence 

(ECL) Western Blotting substrate from ThermoFischer was used for protein detection, 

followed by blot imaging using the Bio-Rad’s Gel-Doc EZ imaging system. The detailed 

Western Blot Analysis protocol followed in this study was provided by Dr. Glasscock 

and can be found in Appendix 3. 

2.5 RNA Isolation and Conversion 

The HL-1 and C166 cells were co-cultured together for 48 hours before they were 

removed for analysis. Treatment groups were pooled together from the three plates, 

respectively. RNA was isolated using Trizol RNA purification kit from Invitrogen. 

Thermo Fischer’s NanoDrop2000 spectrophotometer was used to determine the 
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concentration of RNA present in each sample (in ng/µL), which not only confirms 

whether the RNA isolation was successful but it also provides dilution information 

required for the conversion of RNA to cDNA. Quality of RNA can also be determined by 

comparing the 260/280 absorbance ratios, which indicates the amount of ‘pure’ RNA. 

The optimal 260/280 ratio is 2.0 for RNA. A second measurement for RNA quality is 

determined by comparing the 230/260 absorbance ratios, which indicates how much of 

the sample is purely nucleic acid. The optimal 230/260 ratio is also around 2.0. 

RNA was converted to cDNA using iScriptTM cDNA Synthesis Kit from Bio-Rad, 

following manufacturers protocol, then stored at -20°C until RT-PCR analysis. 

 
Table 2: RNA Isolation Spectrophotometry. Data collected from spectrophotometer from 
RNA isolated from each sample, indicating RNA concentration, 260/280 and 260/230 ratios 
(2.0 is ideal for 260/280 and 260/230 ratios) 

2.6 RT-PCR Analysis  

 cDNA samples were combined with SsoUniversal Advanced SYBR Green 

Supermix, Reverse Transcriptase and nuclease-free water in preparation for RT-PCR 

analysis according to Bio-Rad’s protocol for customized PrimePCR Plates (Figure 5). 

Samples were loaded in triplicate for each gene assay. PrimePCR plates were run using 
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the CFX96 Touch Real-Time PCR Detection System. Data was analyzed and exported 

from CFX Manager Software.  

 
Figure 5: PrimePCR Plate Design.  Plates contained 5 unique gene assays, 1 reference gene 
and controls, including: PCR, Reverse transcriptase, RNA Quality; Empty: positive and 
negative controls 
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3.   RESULTS 

3.1 Co-Culture Optimization 

Optimization experiments were performed to determine optimal pore size for the 

Transwell culture plates by comparing C166 cell growth on 0.4 µm and 3 µm insert pore 

sizes. The insert pore size of 0.4 µm showed superior C166 cell growth compared to the 3 

µm pore size. The 3 µm pores appeared to be too large to cultivate sufficient C166 cell 

growth, due to the reduced number of endothelial cells present on the 3 µm insert when 

compared to the 0.4 µm insert. In addition, C166 cells were found on the bottom of the 6-

well plate, which indicated that the 3 µm pores were large enough to allow C166 cells to 

pass through, which defeats the purpose of our co-culture design.  

Optimization experiments were performed to observe both HL-1 and C166 cells 

in response to DMEM media and Claycomb media, respectively. Resulting cell growth 

indicated that Claycomb media supported the growth of both HL-1 and C166 cells. 

Interestingly, I observed increased growth of C166 in Claycomb media when compared 

to DMEM media, which is normally used in C166 cell culture. The increased C166 

growth could be attributed to the increased amount concentration of growth factors like 

epinephrine and FBS contained in supplemented Claycomb media as compared to 

supplemented DMEM.  

Following cell media optimization, optimal cell and media volume were 

determined for the co-culture system to support both HL-1 and C166 cell growth. I found 
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the optimal cell volume to be 0.5 mL of cells and the optimal media volume to be 1 mL 

of media, based on cell growth comparisons for each cell type in varying conditions.   

3.2 Western Blot Analysis 

 
Figure 6: Western Blot Analysis of FoxO1 Expression in C166 Endothelial cells. White 
arrows show the bands at approximately 78 kDa, indicating presence of FoxO1 expression.  

As shown in Figure 6, western blot analysis showed loss of FoxO1 protein from 

endothelial cell cultures.  Lanes containing samples from non-transfected endothelial 

cells (E-NT) showed a band near 80 kDa in 24 hour-post-transfection time point samples, 

which indicates normal FoxO1 expression. Endothelial cells treated with SignalSilence 

80 kDa 
 

60 kDa 
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for FoxO1 (E-SiFx) or the scrambled sequence (E-SiC) did not have bands in samples 

taken 24 hours post transfection, which indicates loss of FoxO1 protein.  However, there 

was a band in E-SiC samples in 48 hour-post-transfection time point samples, which 

indicates FoxO1 expression.  There was not a band in E-SiFx samples in 48 hour post 

transfection samples, which indicates loss of FoxO1 protein.  Thus, 48 hours post 

transfection was previously determined as the optimal time point to determine reduced or 

removed gene expression of FoxO1 following siRNA transfection of C166 cells. The 

absence of bands at approximately 78 kDa in Lane 6 (E-SiFx) indicates FoxO1 

expression was silenced and that transfection was successful.  

3.3 RNA Isolation  

 I used spectrophotometry following the RNA isolation to determine the 

concentration of RNA in each sample, as well as the quality of the RNA by comparing 

260/280 and 230/260 absorbance ratios. With the exception of E1-SiFx, there was a 

significant amount of RNA isolated from each endothelial samples. The 260/280 ratios in 

the endothelial samples were all very close to 2.0, which indicates high quality of isolated 

RNA. The 230/280 ratios in the endothelial samples were not very close to the 2.0 ratio, 

ranging from 1.19 to 1.74 (Table 1), which indicates ethanol contamination. The 

cardiomyocyte samples had considerably lower concentrations of RNA compared to the 

endothelial samples. The 260/280 ratio in the cardiomyocyte samples were relatively 

close to 2.0, but not as close as the endothelial samples. However, the 230/260 ratios in 

the cardiomyocytes were not close to 2.0 and varied greatly from one another, indicating 

a low quality of pure nucleic acid in these samples (Table 2). Residual ethanol that was 
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not completely removed during RNA isolation is a possible explanation for the poor 

230/260 ratios measured in the cardiomyocyte samples and the slightly decreased 

230/260 ratios measured in the endothelial samples. 

3.4 RT-PCR Analysis  

 
Figure 7: PCR Amplification Curve for Cardiomyocyte samples. RFU: Relative 
fluorescence units. Green line represents threshold for determining relative gene expression. 

Real time RT-PCR was conducted using the PrimePCR plates.  The results of the 

amplification curves can be seen in Figure 7.  Using the BioRad CFX analysis software, 

relative normalized gene expression values were reported for NRG-1, ErbB2, ErbB4, 

IGF-1 and IGF-1 in all samples. All triplicate values were averaged for each respective 

sample. I transformed the average relative normalized gene expression values for each 

sample into fold-change differences by normalizing the treatment groups with a control 

group. Since there were two control groups for each cell type (siRNA controls- E3-SiC 

and C3+E3-SiC and no treatment control- E4-NT and C4+E4-NT), I calculated two sets 
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fold-change values:  

 1) Fold-change differences observed in treatment groups when normalized against 

 siRNA control groups, E3-SiC and C3+E3-SiC (Table 4), 

 2) Fold-change differences observed in treatment groups when normalized against 

 no treatment control groups, E4-NT and C4+E4-NT (Table 5).  

Fold-change differences were graphed to represent gene expression changes in treatment 

samples in Figure 8 and Figure 9 (corresponding to Table 3 and Table 4, respectively.)  

 
Table 3: Fold-Change Differences for Treatments. Fold-change differences observed in 
treatment samples normalized by their respective siRNA control groups (E3-SiC or C3+E3-SiC). 
Green: up-regulated fold-change. Red: down-regulated fold-change. 

 
Table 4: Fold-Change Differences normalized by E4-NT. Fold-change differences observed in 
treatment samples normalized by their respective no treatment control groups (E4-NT or C4+E4-
NT). Green: up-regulated fold-change. Red: down-regulated fold-change. 
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Figure 8: Gene expression of treatment samples when normalized by E3-SiC. Gene 
expression difference in treatment samples by fold-change difference when normalized by their 
respective siRNA control groups (E3-SiC or C3+E3-SiC). Based on the data given in Table 3. 
Negative values indicate down-regulated.  

 

 
Figure 9: Gene expression of treatment samples when normalized by E4-NT. Gene 
expression difference in treatment samples represented by fold-change difference when 
normalized by their respective no treatment control groups (E4-NT or C4+E4-NT). Based on 
the data in Table 4. Negative values indicate down-regulation. 
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Figure 10: Magnified view of the E4-NT normalized gene expression. Fold change difference 
in treatment samples when normalized by no treatment control groups (E4-NT or C4+E4-NT) as 
seen in Figure 10, graphed on using a smaller scale on the horizontal axis. ErbB4**: upper range 
of fold change differences in E1-SiFx (135.27) and E2-SiFx (69.68) not shown on graph.  

The expression levels of the treatment groups that were normalized against the no 

treatment control (E4-NT and C4+E4-NT) expression levels had significantly larger fold-

changes when compared to the treatment groups normalized with the siRNA control 

groups (Figure 8 v. Figure 9 and Figure 10). Specifically, the ErbB2 and ErbB4 

expression fold-changes observed in both E1-SiFx and E2-SiFx groups (normalized 

against E4-NT) each had a significantly higher magnitude than any other expression level 

fold-change observed. Because of these large fold-change values, the axis scale in Figure 

9 makes it difficult to accurately interpret changes in expression levels for the other genes 

measured, especially those with much smaller fold-change values. Therefore, I graphed 

the same fold-change data displayed in Figure 9 (also found in Table 4) using a smaller 

scale on the horizontal axis to magnify the smaller changes in expression levels observed 
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in NRG-1, ErbB2, IGF-1 and IGF-1R (Figure 10). For endothelial cells, gene expression 

levels were down-regulated in both samples when normalized against E3-SiC, except 

ErbB4 and IGF-1R in E1-SiFx, which had 1.62 and 1.05 fold-change differences, 

respectively. Interestingly, almost all of the gene expression levels were up-regulated in 

both samples when normalized against E4-NT, except IGF-1R in E2-SiFx, with a fold-

change difference of 1.54 (negative; down-regulated). 
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4.   DISCUSSION 

In this project, I developed a co-culture model system to study NRG-1 and IGF-1 

signaling from endothelial cells to ErbB2/ErbB4 and IGF-1R on cardiomyocytes to 

emulate signaling events that occur during heart development. As seen in Figure 2, 

NRG-1 and IGF-1 are both able to activate the PI3K/AKT pathway, which is able to 

directly phosphorylate FoxO1 to induce translocation from the nucleus to the cytoplasm, 

therefore, making it inactive for transcription of its target genes. Its target genes including 

cyclin kinase inhibitor, cause cells to withdraw from the cell cycle, leading to the 

cessation of cell proliferation. When FoxO1 expression is completely silenced in murine 

embryo, there are extreme malformations of the heart leading to embryonic lethality. 

Importantly, the phenotype associated with the FoxO1-/- embryo shows an absence of 

trabeculation in the ventricles, endocardial cushion formation and proper myocardial 

compaction, indicating that endocardial signaling is affected by the global loss of FoxO1 

expression.  

The co-culture design used in this project (Figure 4) provided an in vitro 

representation of signaling interactions between endothelial cells of the endocardium and 

cardiomyocytes of the myocardium that occur in vivo. In vitro cell culture systems cannot 

completely replicate in vivo processes; however, a co-culture model system allows for 

individual treatments as well as a more direct analysis of cells. By culturing the 

cardiomyocytes on 6-well plates and culturing endothelial cells on the 0.4 µm Transwell 

co-culture inserts, I used SignalSilence siRNA to reduce or remove FoxO1 expression, 

thereby ‘silencing’ it’s function in the endothelial cells. I hypothesized that there would 
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be a decrease in expression for NRG-1, IGF-1 and their receptors, ErbB2, ErbB4 and 

IGF-1R when FoxO1 expression was silenced.  

4.1 Gene expression  

Control Samples: SiC v. NT 

The gene expression of NRG-1, ErbB2, ErbB4, IGF-1 and IGF-1R each cell 

sample (8 total; 4 cardiomyocyte samples and 4 endothelial samples). Surprisingly, when 

I compared the expression levels of corresponding genes in the siRNA control samples vs. 

the no treatment control samples for both cell types, I observed extreme differences in 

expression level fold-changes. Ideally, gene expression would be the same in both types 

of control samples, since the control siRNA contains a scramble sequence, which does 

not have any function once transfected into the cell. Because of how substantial the fold-

change differences were for the siRNA controls v. the NT controls expression level, I 

created two sets of normalized fold-change values for each cell type, as seen in Table 4 

and Table 5. These results could indicate that the process of siRNA transfection into 

endothelial cells affected gene expression levels. Transfection is a stressful process for 

cells so it is not unreasonable to think that the siRNA treatment affected expression level 

by a considerable amount when compared to the no treatment controls. Because of this 

information, I normalized all of treatment sample expression levels against both the 

siRNA control and the no treatment control expression levels (Table 3 and Table 4). In 

this study, the fold-changes in expression normalized against the siRNA controls support 

the hypothesis while expression changes normalized against the no treatment controls did 
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not. Further experiments would be needed to draw conclusions regarding these 

differences. 

In the endothelial treatment samples, fold-change differences in gene expression 

levels of E1-SiFx and E2-SiFx normalized by E3-SiC showed down-regulation of 

expression of NRG-1, ErbB2 and IGF-1. IFG-1R and ErbB4 were up-regulated only in 

the E2-SiFx sample, but it is difficult to make conclusions with such limited data. 

In the cardiomyocyte treatment samples, fold-change differences in gene 

expression levels of C1+E1-SiFx and C2+E2-SiFx normalized by C3+E3-SiC both 

showed down-regulation of expression of NRG-1, ErbB2 and IGF-1, similar to the 

endothelial cell samples. IGF-1R was up-regulated in C1+E1-SiFx but down-regulated in 

C2+E2-SiFx. No expression levels were detected for ErbB4 in either C1+E1-SiFx and 

C2+E2-SiFx samples. Again, additional data from repeated trials would have helped 

interpret the data from a biological point of view. Quality of RNA (Table 2) could have 

affected the detection of ErbB4. Taken together, the data supports the hypothesis that 

there is a decrease in NRG-1 and IGF-1 expression when FoxO1 expression is absent.  

4.2 Limitations  

Due to personnel changes in Dr. William Claycomb’s lab, I was unable to obtain 

any more HL-1 cells during my research. This left our lab with a limited amount of HL-1 

cells stored in cryopreservation. The HL-1 cells became contaminated mid-way through 

my research therefore I was forced to pull from our limited quantity of frozen cells. The 

HL-1 cells we had in cryopreservation were of a very high passage, with some dating 

back to the early 2000’s; however, these cells were my only option for cell culture at that 
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point in my research. Cryopreservation is an extremely stressful process for cells to 

undergo and thousands of cells are killed in the process. In addition, cell lines decrease in 

stability as well as integrity as their age and passage number increase. Therefore, the 

chances of successfully culturing the HL-1 cells left in cryopreservation were very slim.  

Multiple trials of the co-cultures would have been ideal but unfortunately, I was not able 

to culture the amount of HL-1 cells necessary carry out more than one trial. That being 

said, the experimental trial I was able to complete was done in triplicate and produced a 

sufficient amount of RNA and DNA for a significant analysis. In addition, because I was 

only able to perform one experimental trial, I could not use statistical analysis to compare 

multiple data sets as I would have preferred.  

4.3 Future Directions 

 I would first recommend future studies complete additional trials of this co-

culture system to collect a substantial amount of data to perform statistical analysis. I 

would also recommend studies investigating the differences in siRNA expression levels 

compared to no treatment controls, given the significant differences observed in the 

results of this project.  

The immortalized HL-1 cardiomyocyte cell line provides a convenient way to 

study heart development in a cell culture environment, in addition to serving as a simpler 

alternative to using primary cardiomyocyte cells. In order to study cardiomyocyte 

proliferation, the cells must be isolated from an embryo of timed-pregnant mice, which is 

a more time-consuming and costly way to study cardiomyocyte cell cultures. However, 

recent advances in stem cell biology and culturing methods have made the use of HL-1 
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cardiomyocytes a less popular choice in cell culture labs. The use of multipotent stem 

cells derived from human somatic cells has become extremely popular in cell culture 

research. Specifically, the ability to induce these derived mesenchymal stem cells into 

various different cell types has created many new opportunities for cell culture research. 

For example, human adipose-derived stem cells (ADSCs) can be induced to differentiate 

into cardiomyocyte cells. Cell cultures using this method of induced differentiation to 

cardiomyocytes is a much more attractive option than using the immortalized HL-1 cell 

line. For future cell culture studies in heart development, I would recommend the use of a 

co-culture model system between cardiomyocytes and endothelial cells to emulate early 

in vivo cellular signaling involved in cardiomyocyte proliferation and heart development.  

I would also recommend the method of induced differentiation of human ADSC to 

produce human cardiomyocytes. 

4.4 Conclusions  

 Though my thesis project was limited by my ability to acquire more 

cardiomyocyte cells, my execution of the cardiomyocyte-endothelial cell co-culture 

system proved to be a promising technique in studying early cell signaling events that 

occur during heart development in vivo. The successful endothelial-specific FoxO1 knock 

down allowed me to study the affect of FoxO1 gene expression on the expression of 

genes known to have significant roles in heart development. In addition, the co-culture 

design allowed me to further investigate the affect of gene expression levels on in vitro 

cell-cell signaling interactions between cardiomyocytes and endothelial cells to emulate 

signaling between the myocardium and endocardium in vivo. My results provide further 
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support that FoxO1 expression could be regulated by the PI3K/Akt pathway, which is 

activated by growth factors like NRG-1 and IGF-1. It is my hope that my project might 

assist in the pursuit of a deeper understanding of myocardial-endocardial signaling in the 

developing heart, as these signals remain key to discovering therapeutic methods for 

heart regeneration.   
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APPENDIX 1 
HL-1 Cell Culture Procedures 
Provided by Dr. William Claycomb 

I. HL-1 Media Solutions 
Complete Claycomb Medium  

 

Wrap in aluminum foil, since the medium is extremely light sensitive.  
• Supplemented media is good for two weeks;  

o At 2 weeks, can replenish the L-glutamine once 
Norepinephrine (mw 319.3): 10 mM Stock in 30 mM Ascorbic Acid 

1. Add 0.148 g ascorbic acid to 25 ml of cell culture grade distilled water.  
2. Add 80 mg norepinephrine to the 25 ml of  30 mM ascorbic acid.  
3. Filter-sterilize using 0.2 µm Acrodisc syringe filter 
4. Aliquot in 1 ml volumes into sterile freezer vials with screw caps, and store at -20C. This is 

10mM (stock) norepinephrine. Use 1 mL of stock per 100 mL medium for a 0.1 mM final 
concentration. 

• Good for one month in -4 C freezer 
Gelatin/Fibronectin 

1. Prepare 200 ml of 0.02% gelatin – 0.04 g in 200 ml dH2O. 
2. Autoclave and allow to cool to room temperature. 
3. Add 1 ml fibronectin solution, mix. 
4. Aliquot 12 ml volumes in 15 ml conical tubes and freeze.  This can be refrozen after 

thawing. 
L-Glutamine 
• Comes as 100x solution 
• Aliquot 12 mL volumes into 15 mL conical tubes  

Claycomb Wash Medium  
Media   95 mL 
FBS  5 mL 

Freezing Medium  
FBS      9.5 mL 
DMSO   0.5 mL  
• This can be stored up to a week at 4°C.  

 

 

 

 50 mL 100 mL 200 mL 500 mL 
FBS 5 mL 10 mL 20 mL 50 mL 

Pen/Strep 0.5 mL 1 mL 2 mL 5 mL 
Norepi 

(10mM) 
0.5 mL 1 mL 2 mL 5 mL 

L-Glut 
(200mM) 

0.5 mL  1 mL 2 mL 5 mL 

Claycomb 43.5 mL 87 mL 174 mL 435 mL 
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II. HL-1 Cell Culturing  
A. Coating Plates 
1. Coat plate with gel/fibro and incubate for at least an hour before culture  

a. 1 mL/well for 6-well  or 3 mL for 100 mm/T75 
2. Remove the gelatin/fibronectin and wash plate with Claycomb Wash  
3. Add new media then place back in incubator until ready to add cells 

a. 1 mL for 6-well 
b. 5 mL for 100 mL 
c. 10 mL for T75 

B. Thawing 
1. Gelatin/fibronectin coat a plate for at least an hour in the incubator 
2. Remove the gelatin/fibronectin from the flask and replace with 10 mL of supplemented 

Claycomb medium. Place this flask in incubator. 
3. Transfer 10 mL wash medium into an empty 15 mL centrifuge tube. Incubate tube in 37°C 

water bath 
4. Quickly thaw cells in a 37°C water bath (~2 min) and transfer into the 15 mL centrifuge 

tube containing the wash medium.  
5. Centrifuge for 5 min at 500xg 
6. Remove the tube from centrifuge and remove the wash medium by aspiration. 
7. Gently resuspend the pellet in 5 mL supplemented Claycomb medium and add to the 10 mL 

of medium already in the plate.  
8. Replace the medium with 15 mL of fresh supplemented Claycomb medium 4 hours alter 

(after cells have attached). 
C. Culturing  
1. Coat culture plates with gelatin/fibronectin for at least 1 hour at 37C.  This can be done 

overnight if more convenient.  Be sure to agitate the plates in order to spread the solution 
evenly. 

a. 1 ml per well for a 6-well plate 
b. 3 ml for a 100 cm plate or T75 flask 

2. Remove the gelatin/fibronectin and add Complete Claycomb to the plates. 
3. Thaw vial of HL-1 cells and pour into 9 ml Claycomb Wash Medium. 
4. Count the cells. 
5. Centrifuge the cells @200 xg for 10 min.  Remove wash medium and resuspend in an 

appropriate volume of Complete Claycomb Medium. 
a. Final volume for each type of plate: 

i. 2 ml/well for a 6-well dish 
ii. 10 ml for a 100 mm plate 

iii. 15 ml for a T75 flask 
6. Add the cells to the plates and incubate at 37C. 
7. Check the cells daily and replace the media every 2 days.  Double the volume if leaving the 

cells over the weekend. 
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D. Subculturing  
• For a 1:3 split 

1. Remove media and rinse 1x with PBS. 
a. 1 ml/well for a 6-well dish 
b. 5 ml for a 100 mm plate or T75 flask 

2. Add 0.05% trypsin/EDTA to the plate and incubate for 1 min at 37C. 
a. 1 ml/well for a 6-well dish 
b. 2 ml for a 100 mm plate 
c. 3 ml for a T75 flask 

3. Replace the trypsin/EDTA with fresh and incubate for 2 min at 37C. 
4. Check to see if cells are dislodged. If not, rap plates on bench until completely floating; 

may take 5-10 min. 
5. Add Claycomb Wash to plate (volume equal to double the trypsin volume)  
6. Transfer the cells to a conical tube and centrifuge at 500g for 5 min. 
7. Cells are now ready for passaging or freezing. 

Passaging: resuspend cells in Complete Claycomb and follow the culturing procedure. 
Freezing: suspend the cells in ice cold freezing medium (1 x 106 cells/ml). Transfer to 
cryovials (1 ml/vial), put in thawed freezing container, and put in ultracold freezer. 

E. Freezing  
One T75 flask/100 mm into one cryovial 

1. Briefly rinse the plate with HL-1 culture with 5 mL of PBS warmed to 37°C. Remove via 
aspiration. 

2. Transfer 3 mL of 0.05% trypsin/EDTA into the plate. 
3. Incubate the flask at 37°C for 1 minute 
4. Remove the trypsin/EDTA from the flask and replace with 3 mL of fresh 0.05% 

trypsin/EDTA. Incubate for 2 min. 
5. Check to see if cells have dislodged. If not, rap plates on bench until completely floating; 

may take 5-10 min. 
6. Add 8 mL of Claycomb wash medium to the flask and transfer 6 mL into a 15 mL 

centrifuge tube. 
7. Rinse the empty plate with 8 mL wash medium and add the cells already in the 15 mL tube; 

14 mL total volume 
8. Centrifuge tube for 5 minutes at 500xg 
9. Remove wash medium by aspiration. 
10. Gently resuspend cells into a cryovial. Place the cryovial containing the cells into a Nalgene 

freezing jar containing room temp isopropanol. Freeze at -80°C; transfer to liquid nitrogen 
the next day  

11. Immediately place the freezing jar in a -80°C freezer and freeze the cells at a rate of -
1°C/minute.  

12. 6 to 12 hours later, transfer the vial to a liquid nitrogen drawer. 
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APPENDIX 2 
C166 Cell Culture Procedures 

Provided by ATCC 

I. C166 MEDIA SOLUTIONS 
Supplemented DMEM 
DMEM         450mL  
FBS             50 mL 
Pen/Strep       5mL 
Freezing Medium 
Media     9.5 mL 
DMSO    0.5 mL 

II. C166 CELL CULTURE PROTOCOL 
A. Subculturing  
1. Remove and discard the culture medium. 
2. Briefly rinse the cell layer with Dulbecco’s Phosphate Buffered Saline (PBS).  

NOTE: This step removed all traces of serum that contains trypsin inhibitors.  
3. Remove the PBS from the plate.  
4. Add 2.0 mL of Trypsin- EDTA Solution to the plate. 
5. Incubate cells in 37°C, 50% CO2 for 3-6 minutes; do not exceed 10 minutes 
6. Once the cells are loose, add 8 mL of medium to the plate. Pipet cells and medium up and 

down to mix. 
7. Prepare the correct number of plates (label with initials, date, cell type, passage #) and add 9 

mL of complete medium to 100 mm plate (For 6-wells: 1 mL per well) 
8. Add 1 mL of cells to each plate (For 6-wells: 0.5 mL per well) 
9. Incubate plates in a 37°C, 5% CO₂ incubator.  
B. Freezing 
1. Remove and discard culture medium. 
2. Briefly rinse the cell layer with Dulbecco’s Phosphate Buffered Saline (PBS). 
3. Remove the PBS from the plate. 
4. Add 2.0 mL of Trypsin- EDTA Solution to the plate. 
5. Incubate plates in a 37 °C, 5% CO₂ incubator for 3-6 minutes. 

*Note: After 3 minutes, check to see if the cells have let go of the plate (look at the plate 
under the microscope). If the cells are still attached place back in the incubator for 2-3 more 
minutes. DO NOT EXCEED 10 MINUTES. 

6. Once the cells are loose, add 8 mL of medium to the plate. Pipet cells and medium up and 
down to mix. 

7. Add the entire content of the plate to a 15 mL centrifuge tube.   
8. Centrifuge the tubes at 3000 rpm for 5 minutes.  
9. Remove the medium from the tube, only leaving the pellet inside. 
10. Add 1.5 mL of medium + DMSO to each tube. Pipet up and down to remove the pellet.  
11. Remove all of the liquid from the tube and add it to a 2 mL tube.  
12. Place all tube into the -80°C freezer overnight before placing them in the liquid nitrogen the 

next day.  
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V. C166 TRANSFECTION  
1. Plate 0.5 mL cells in 1 mL on inserts the day before  

a. Use Claycomb Media for C166’s in addition to HL-1’s  
2. For each transfection sample, prepare oligomer-Lipofectamine 2000 complexes as follows: 

a. 15 µL siRNA + 750 µL Opti-MEM 
i. TWO FoxO1 siRNA tubes/6-well plate 

1. 6 tubes/experiment 
ii. ONE Control siRNA tubes/6-well plate 

1. 3 tubes/experiment 
b. 10 µL Lipofectamine + 750 µL Opti-MEM  

i. 9 tubes/experiment 
ii. Incubate at room tempertaure for 5 minutes 

c. Mix two solutions together  
i. Incubate at room temperature for 20 minutes 

3. Remove medium from wells using the vacuum.  
4. Rinse each well with PBS. 
5. Add the oligomer-Lipofectamine complexes to each well containing cells and medium. 
6. Mix gently by rocking back and forth.  
7. Incubate cells at 37°C, 5% CO₂ incubator for 48 hours *Note: Change media after 4-6 hours 
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APPENDIX 3 
Western Blot Protocol 

Provided by Dr. Laura Glasscock 
Pouring Gel  
1.  Pour separating (running) gel (10%, denaturing): 
 -  Prop cassette up with clips on a paper towel 
 -   In a beaker, mix:  
  3.12 ml 40% acrylamide  3.12 ml 4x running buffer 
  6.25 ml dH20 
 -  Immediately before you pour the gel, add: 
  41.26 ml 10% APS (catalyst) 
  6.25 ml TEMED (polymerizes acrylamide) 
 -  Using a pipette, slowly pour gel in-between cassettes to spacer mark.   
 -  Overlay gel with approx. 800 ml butanol 
 -  Let gel polymerize.  
 -  Dispose of butanol; use a piece of filter paper to remove residual butanol. 
Stacking gel:  
 -  In a beaker, mix: 
  0.624 ml acrylamide 
  1.55 ml 4x stacking buffer 
  4 ml dH20 
  37.5 ml 10% APS 
  12.5 ml TEMED 
 -  Pipette onto top of running gel until you reach the top of the shorter plate.  
 -  Place spacer in gel and let polymerize (approx. 15’)  
Sample preparation: 
1.  Add sample buffer to your sample.  
 -Final Volume: 20 mL: 10 mL sample + 10mL 2x Sample Buffer  
Running the gel: 
1.  Remove small clips from gel sides and remove tape. 
2.  Remove the spacer.  
3.  Using 1x running buffer (Laemlli), fill the space behind the gel to the top and the 
bottom chamber about 1 inch. 
4.  Using a syringe, remove all bubbles.  
5.  Load samples into each well. 
6.  Connect lid and electrodes to the power source. Run under constant current. 
 -  Set current to 15 mA for approx. 15 min. 
 -  Turn current up to 30-35 mA 
 -  Volts should be about 100.   
8.  When the dye front reaches the bottom, turn the power supply off and disconnect the 
power supply from the gel. 
9.  Dispose of running buffer and open cassette to remove gel  
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Western Blotting 
Prepare blot for transfer:  about 30’ before gel is through: 
1.  Cut nitrocellulose and submerge in MeOH in a small dish for about 60 sec. 
2.  Pour in Towbin buffer to completely submerge, plus extra, components.  
 -  Let this equilibrate for approx. 20’ before assembling with gel. 

1/2 x Towbin buffer for everything.  
3.  Remove gel from cassettes under buffer with your finger. Assemble cassette UNDER 
BUFFER as follows: 2 sponges, 2 pieces. filter paper, nitrocellulose (line up marks, 
orientation), gel  (“gel side back”), 2 pieces. filter paper, 2 sponges 
5.  Load “sandwich” into transfer cassette then load into transfer chamber (gel side back).  
7.  Fill cassette with 1/2 x Towbin buffer to top of sponges (bellow screws).  Fill transfer 
chamber about 2 inches.   
Transfer: 
1. Transfer at 25 V, constant voltage for 1-2 hours 1 hour  
 -  Current should be about 250-500 
 -  Check every 20’ or so to see if over heating. 
2.  Turn power source off, disconnect, disassemble sandwich.  
3.  Use nitrocellulose in WB probing/detection steps.  
Probing: 
1.  Place one nitrocellulose blot in each pipette tip lid or other small container.  
2.  Block with 3% milk in 1x TBS buffer, 30’, rocking. 
3.  Rinse with TBS.  
4.  Add primary antibody: 
 -  Dilution: 1:1000 
 -  Make in 1% milk/TBS 
 -  Rock 3 hours-overnight  
5.  Rinse with TBS. 
 Wash 3x, 5’ each, with TBS while rocking.  
6.  Add secondary antibody: 
 - Anti-rabbit HRP-conjugated (SCBT) to enzyme for substrate 
 - Dilution: 1:10000 
 - Rock 1-3 hours or overnight 
7.  Rinse with TBS. 
 Wash 2x, 5’ each, with TBS while rocking.  
 Wash 1x with distilled water.  Leave it in this until you do the ECL. 
8.  Detection:  ECL 
ECL detection: 
1.  Remove wash solution but leave blot in lid.  
2.  Prop one end of the lid up and add approx. 4 ml each ECL reagent to the bottom of the     
     lid (do not touch blot yet).  Mix 2 reagents in lid gently.  
3.  Un-prop lid and cover blot. Let sit for 1 minute. 
4.  Remove blot with tweezers, shake gently over paper towel, place on saran wrap and 
cover (no bubbles, wrinkles, etc.) 
5. Place blot on imaging surface of Bio-Rad Gel-Doc EZ machine and image blot. 
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