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The circadian fluctuation of melatonin in Stenostomum virginianum 
 

Ian D. Deas 
Julian P. Smith III, Ph.D. (Mentor) 

 
ABSTRACT 

Much is known about melatonin and its role in the circadian regulation of vertebrate 
organisms. However, melatonin has not been studied extensively in more primitive bilaterians. The 
aim of this study was to analyze the relationship between melatonin and the circadian rhythm in the 
organism Stenostomum virginianum. Melatonin assay methods from previous research in the field were 
optimized for smaller tissue sampling of microscopic metazoans. The optimized assay methodology 
was then used to identify melatonin in Stenostomum virginianum using high performance liquid 
chromatography (HPLC). Identification of photoreceptors was used to correlate the presence of 
melatonin to the circadian rhythm. PAX-6 was chosen for study because it is considered the master 
eye regulatory gene. Immunohistochemistry and confocal microscopy confirmed the presence of 
PAX-6 in the anterior region of S. virginianum. The next step in this project is the examination of 
melatonin concentration at various time points and the comparison of the fluctuation pattern to the 
S. virginianum sleep and reproduction cycles. Following this comparison, the next logical step is the 
analysis of melatonin biosynthetic enzymes. This project builds on the work of Dan Stanton and 
Julian P. Smith, PhD.  
 

INTRODUCTION 
The circadian rhythm has been studied extensively in vertebrates, but the evolutionary 

examination of the biological clock in basal multicellular organisms has yet to be completed. Previous 
research has revealed that melatonin is highly involved in the biological clock; it synchronizes daily 
rhythms in vertebrates (Klein et al 1997). Further study has suggested that melatonin is certainly involved 
in the circadian rhythm of primitive organisms (Roopin & Levy 2012a,b).  The model organism of such 
studies is the planarian. When Dugesia were decapitated, their fissioning rates greatly increased, suggesting 
that an inhibitory compound is released from the head. When decapitated planarians were exogenously 
exposed to melatonin, asexual reproduction was suppressed. When returned to regular culture water, the 
normal rate of fissioning resumed. This suggested that melatonin is present in the head of planarians and 
is also involved in fission inhibition (Morita & Best 1984). In order to further examine the evolution of 
the circadian clock, a more primitive Catenulid flatworm (Larson & Jondelius 2008) was chosen for 
study: Stenostomum virginianum. Previous study of S. virginianum has shown that 0.1mM of melatonin 
suppressed asexual fissioning when applied exogenously and down-regulates mitosis (Stanton & Smith, 
unpublished). However, no previous attempts have been made to successfully identify melatonin inside 
S. virginianum. The aim of this study was to develop a melatonin assay technique using high performance 
liquid chromatography (HPLC) and investigate whether or not melatonin is present in S. virginianum. 

Melatonin is involved in the synchronization of the circadian clock (Klein et al 1997). In order to 
correlate melatonin cycling back to the circadian rhythm, photoreceptors must be present. Sensory 
receptors were discovered in the sister species Stenostomum leucops and S. leucops exhibited an intense 
response to illumination when in a resting state (Palmberg and Reuter 1992). The paired box protein 6 
(PAX-6) is the highly conserved master eye-regulatory gene and is expressed in both developing and 
mature eyes across phyla (Callaerts et al 2006). Therefore, a second aim of this study was to identify 
PAX-6 in order to locate possible photoreceptors in S. virginianum using immunohistochemical analysis 
and confocal microscopy. 
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MATERIALS & METHODS 
Stenostomum virginianum (Platyhelminthes, Catenulida), was obtained from college lake at 

Winthrop University and kept cultured in artificial pond water (APW) on a 14:10 [L:D] cycle at 21.0 °C. 
Organisms were fed Paramecium multimicronucleatum purchased from Carolina Biological Supply. New 
culture dishes were formed approximately every 1.5 weeks in order to maintain optimal fissioning 
conditions.  

Optimization of high performance liquid chromatography 
A solution of melatonin standard was prepared using anhydrous melatonin and ultrapure water. 

150 μL of solution was analyzed for optimal excitation wavelength using a spectrofluorometer. Using 
this wavelength, the optimal emission wavelength was then obtained. Using the observed optimal 
excitation and emission wavelengths, the optimal pH of the 50 mM ammonium acetate mobile phase 
was observed using a spectrofluorometer. The optimized values obtained from the previous experiments 
above were used on the HPLC to optimize the mobile phase and retention time. Using a standard 
solution of melatonin and serotonin in ultrapure water, the retention time was optimized beginning at 
22/78 (v/v) of acetonitrile and 50mM ammonium acetate (5.0 pH) using an incremental decrease of 
acetonitrile. The optimization occurred at the shortest retention time with two distinct melatonin and 
serotonin peaks.  

High performance liquid chromatography 
Analysis of melatonin using HPLC was completed using the optimized procedure by collection 

of 500 S. virginianum in a 1.5 mL microcentrifuge tube. Ice cold Qiagen RLT buffer (100 μL) was added 
and allowed to sit on ice for 5 minutes; 200 μL of ice cold extraction solution ( 0.15M perchloric acid 
with 0.1% ascorbic acid and 0.01% disodium EDTA), was added and homogenized using vigorous 
pipetting; the tube was centrifuged for 10 minutes at 10,000 rpm. One hundred and fifty microliters (150 
μL) of the supernatant was injected into reverse-phase HPLC with a C18 stationary phase column (5μm 
particle, 4.6 mm x 150mm column). Using an isocratic elution with 70/30 (v/v) of 50mM ammonium 
acetate pH 5.0 and acetonitrile as the mobile phase, the flow rate was set at 1.0mL/min. Relative 
fluorescence detection was set to an excitation wavelength of 296 nm and emission wavelength of 348 
nm.  

Immunohistochemistry 
Four S. virginianum were separated from culture and flash-frozen in APW on a copper block 

immersed in liquid nitrogen. The specimens were freeze substituted in ethanol cooled in liquid nitrogen 
and placed in a freezer for 13 days. The four specimens were then divided into two groups: experimental 
and control. Organisms were warmed to room temperature and transferred to 4% formaldehyde in 1x 
PBS with 10% sucrose. Specimens were then rinsed three times in twenty minute increments in 1x PBS 
with 0.1% BSA, followed by blocking in BSA-T for one hour on a rocker in the refrigerator. Dilute anti-
PAX-6 primary antibody (1:100) was applied to the experimental specimens in 1X PBS with BSA-T and 
was incubated overnight in the cold. Both groups were rinsed three times in sixty minute intervals with 
1x PBS with 0.1% BSA on a rocker in the refrigerator. Specimens were all incubated in the refrigerator 
overnight in a cocktail of secondary antibody (Cy3-labeled Donkey anti-mouse) 1:400 to highlight PAX-
6, Hoechst 33342 1:500 to highlight nuclei, and Alexa488/phalloidin to highlight muscles. The following 
morning all S.virginianum were rinsed 3x30’ in BSA-T on a rocker in the refrigerator. Twenty-five 
microliters of VectaShield was added to a slide, following the placement of the specimens on the slide in 
one drop of glycerin. A cover slip supported by aluminum foil was placed above the specimen and 
secured using Sally Hansen’s clear nail polish. Specimens were imaged using confocal microscopy.  

 
RESULTS 

Spectrofluoremeter experiments resulted in an ideal excitation wavelength of 296 nm (Figure 1), 
an ideal emission wavelength of 348 nm (Figure 2), and an optimal 50mM ammonium acetate pH of 5.0.  
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Figure 4: Shows the experimental run with a 
significant melatonin peak in the 4.45min range; 
peak area circled 

Optimization tests revealed a retention time of 4.45 minutes, using 70/30 (v/v) of 5.0 pH 50mM 
ammonium acetate and acetonitrile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Melatonin was present in S. virginianum using HPLC. The peak area at 4.45 minutes in the 
ammonium acetate clearing run was 0.574 mV*min (Figure 3). The peak area at 4.45 minutes in the 
experimental group injection was 2.003 mV*min (Figure 4). The second peak was higher, showing that 
melatonin is present. 

 
 

 

 

 

 

 

 

 

Figure 2: Spectrofluoremeter scan of 
emission wavelength: optimal wavelength 
and peak circled at 348 nm. 

Figure 1: Spectrofluoremeter scan of 
excitation wavelength: optimal wavelength 
and peak circled at 296nm. 

Figure 3: Shows the control run without a 
significant melatonin peak in the 4.45min range; 
peak area circled 
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PAX-6 was discovered in the anterior region of S. virginianum, near the lobes of the brain (Figs, 5, 
7). The control specimen was negative for Cy3/PAX-6 in the same region (Figs. 6, 8) using the confocal 
observations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

DISCUSSION 
The optimization of melatonin assay methodology builds upon the previous works of other 

investigators in the field. This newly developed technique allows for tissue sampling at much lower 
quantities, building directly on research that used larger samples of tissue (Almeida et al 2011). The 
methodology also refined the assay approach outlined by Morita and Best used on Dugesia (1987). The 
improvement of sampling methods and the requirement for less tissue sampling allowed for the analysis 
of much smaller organisms such as Stenostomum.  

Figure 6: Control specimen; maximum 

intensity z-projection; muscle stained 

yellow; note no fluorescence in PAX-6 

channel 

Figure 8: Control specimen; maximum 
intensity z-projection; nuclei stained 
blue; note no fluorescence in PAX-6 
channel; brain lobes (BL). 

BL 

Figure 5: Experimental specimen; 

maximum intensity z-projection; muscle 

stained yellow; PAX-6 stained red 

(arrows) 

Figure 7: Experimental specimen; 
maximum intensity z-projection; nuclei 
stained blue; PAX-6 stained red 
(arrows); brain lobes (BL). 

BL 
BL 
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  The identification of melatonin using HPLC provides support for Stanton and Smith’s 
(unpublished) hypothesis that melatonin is responsible for suppression of asexual reproduction and the 
down-regulation of mitosis by showing that melatonin is present inside of the organism. The next step 
will be to sample S. virginianum at different time periods in the circadian cycle to test whether or not 
melatonin fluctuates in a circadian fashion.  
 The positive detection of PAX-6 means that there is photoreception in S. virginianum. These 
results are similar to those of Palmberg and Reuter, who examined similar eye-like structures in 
Stenostomum leucops (1992). The next step in this project will be to examine the structure of the eye-like 
region in S. virginianum using transmission electron microscopy (TEM). The analysis of the PAX-6 
positive regions will provide further insight into the photoreceptive function of the positive results. 
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